ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical interpretation of the near-infrared colours of low redshift galaxies

114   0   0.0 ( 0 )
 نشر من قبل Celine Eminian Miss
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use empirical techniques to interpret the near-infrared colours of a sample of 5800 galaxies drawn from Sloan Digital Sky Survey (SDSS) main spectroscopic sample with YJHK photometry from the UK Infrared Deep Sky Survey (UKIDSS) data release one. We study correlations between near-IR colours measured within SDSS fibre and physical parameters derived from the spectra. These parameters include specific star formation rate, stellar age, metallicity and dust attenuation. All correlations are analyzed for samples of galaxies that are closely matched in redshift, in stellar mass and in concentration index. Whereas more strongly star-forming galaxies have bluer optical colours, the opposite is true at near-IR wavelengths -- galaxies with higher specific star formation rate have redder near-IR colours. This result agrees qualitatively with the predictions of models in which Thermally Pulsing Asymptotic Giant Branch (TP-AGB) stars dominate the H and K-band light of a galaxy following a burst of star formation. We also find a surprisingly strong correlation between the near-IR colours of star-forming galaxies and their dust attenuation as measured from the Balmer decrement. Unlike optical colours, however, near-IR colours exhibit very little dependence on galaxy inclination. This suggests that the correlation of near-IR colours with dust attenuation arises because TP-AGB stars are the main source of dust in the galaxy. Finally, we compare the near-IR colours of the galaxies in our sample to the predictions of three different stellar population models: the Bruzual & Charlot 2003 model, a preliminary version of a new model under development by Charlot & Bruzual, which includes a new prescription for AGB star evolution, and the Maraston 2005 model.

قيم البحث

اقرأ أيضاً

261 - Guinevere Kauffmann 2017
The goal of this paper is to investigate the physical nature of galaxies in the redshift range $0.02<z<0.15$ that have strong excess emission at mid-IR wavelengths and to determine whether they host a population of accreting black holes that cannot b e identified using optical emission lines. We show that at fixed stellar mass $M_*$ and $D_n(4000)$, the distribution of [3.4]-[4.6] $mu$m (WISE W1-W2 band) colours is sharply peaked, with a long tail to much redder W1-W2 colours. We introduce a procedure to pull out the red outlier population based on a combination of three stellar population diagnostics. When compared with optically-selected AGN, red outliers are more likely to be found in massive galaxies, and they tend to have lower stellar mass densities, younger stellar ages and higher dust content than optically-selected AGN hosts. They are twice as likely to be detected at radio wavelengths. We examine W1-W2 colour profiles for a subset of the nearest, reddest outliers and find that most are not centrally peaked, indicating that the hot dust emission is spread throughout the galaxy. We find that radio luminosity is the quantity that is most predictive of a redder central W1-W2 colour. Radio-loud galaxies with centrally concentrated hot dust emission are almost always morphologically disturbed, with compact, unresolved emission at 1.4 Ghz. Eighty percent of such systems are identifiable as AGN using optical emission line diagnostics.
We present medium spectral resolution near-infrared (NIR) HK-band spectra for 8 low redshift (z<0.06) radio galaxies to study the NIR stellar properties of their host galaxies. As a homogeneous comparison sample, we used 9 inactive elliptical galaxie s that were observed with similar resolution and wavelength range. The aim of the study is to compare the NIR spectral properties of radio galaxies to those of inactive early-type galaxies and, furthermore, produce the first NIR HK-band spectra for low redshift radio galaxies. For both samples spectral indices of several diagnostic absorption features, SiI(1.589microns), CO(1.619microns), NaI(2.207microns), CaI(2.263microns), CO(>2.29microns), were measured. To characterize the age of the populations, the measured EWs of the absorption features were fitted with the corresponding theoretical evolutionary curves of the EWs calculated by the stellar synthesis model. On average, EW(CO 2.29) of radio galaxies is somewhat greater than that of inactive ellipticals. Most likely, EW(CO 2.29) is not significantly affected by dilution, and thus indicating that elliptical galaxies containing AGN are in a different stage in their evolution than inactive ellipticals. This is also supported by comparing other NIR features, such as CaI and NaI, with each other. Absorption features are consistent with the intermediate age stellar population, suggesting that host galaxies contain both an old and intermediate age components. It is consistent with previous optical spectroscopy studies which have shown evidence on the intermediate age (~2 Gyr) stellar population of radio galaxies, and also in some of the early-type galaxies. The existence of intermediate age population is a link between the star formation episode, possibly induced by interaction or merging event, and the triggering of the nuclear activity.
88 - S. J. Curran , J. P. Moss 2019
A simple estimate of the photometric redshift would prove invaluable to forthcoming continuum surveys on the next generation of large radio telescopes, as well as mitigating the existing bias towards the most optically bright sources. While there is a well known correlation between the near-infrared K-band magnitude and redshift for galaxies, we find the K-z relation to break down for samples dominated by quasi-stellar objects (QSOs). We hypothesise that this is due to the additional contribution to the near-infrared flux by the active galactic nucleus (AGN), and, as such, the K-band magnitude can only provide a lower limit to the redshift in the case of active galactic nuclei, which will dominate the radio surveys. From a large optical dataset, we find a tight relationship between the rest-frame (U-K)/(W2-FUV) colour ratio and spectroscopic redshift over a sample of 17,000 sources, spanning z ~ 0.1 - 5. Using the observed-frame ratios of (U K)/(W2-FUV) for redshifts of z > 1, (I-W2)/(W3-U) for 1 < z < 3 and (I-W2.5)/(W4-R) for z > 3, where W2.5 is the 8.0 micron magnitude and the appropriate redshift ranges are estimated from the W2 (4.5 micron) magnitude, we find this to be a robust photometric redshift estimator for quasars. We suggest that the rest-frame U-K colour traces the excess flux from the AGN over this wide range of redshifts, although the W2-FUV colour is required to break the degeneracy.
89 - M. Juvela , J. Montillaud 2015
Several methods exist to convert near-infrared (NIR) stellar observations into extinction maps. We present a new method based on NIR multiband observations. The method uses a discretised version of the distribution of intrinsic stellar colours. A num ber of variations of the basic method are tested, and the results are compared to NICER calculations. When photometric errors are large, the results are close to those of NICER method but some advantages can be seen when the distribution of intrinsic colours cannot be described well with a single covariance matrix. A priori information about relative column density variations at sub-beam scales can result in a significant increase in accuracy. The results may be further improved by considering the magnitude dependence of the intrinsic colours. Thus, the new methods are useful mostly when photometric errors are small, the distribution of intrinsic colours is well known, or one has prior knowledge of the small-scale structures.
315 - V. Strazzullo 2006
We determined the K band luminosity function (LF) of cluster galaxies at redshift z~1.2, using near-infrared images of three X-ray luminous clusters at z=1.11,1.24,1.27. The composite LF was derived down to M*+4, by means of statistical background su btraction, and is well described by a Schechter function with K*=20.5 AB mag and alpha=-1. From the K band composite LF we derived the stellar mass function of cluster galaxies. Using available X-ray mass profiles we determined the M/L ratios of these three clusters, which tend to be lower than those measured in the local universe. With these data, no significant difference can be seen between the shapes of the cluster galaxies LF and the LF of field galaxies at similar redshift. We also found no significant evolution out to z ~1.2 in the bright (<M*+4) part of the cluster galaxies LF probed in this study, apart from a brightening of ~1.3 mag of the characteristic magnitude of the high redshift LF. We confirm, and extend to higher redshift, the result from previous work that the redshift evolution of the characteristic magnitude M* is consistent with passive evolution of a stellar population formed at z>2. The results obtained in this work support and extend previous findings that most of the stars in bright galaxies were formed at high redshift, and that K-bright (M>10^11 Msun) galaxies were already in place at z ~ 1.2, at least in the central regions of X-ray luminous clusters. Together with recent results on the field galaxies stellar mass function, this implies that most of the stellar mass is already assembled in massive galaxies by z ~ 1, both in low and high density environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا