ترغب بنشر مسار تعليمي؟ اضغط هنا

IR Monitoring of the Microquasar GRS 1915+105: Detection of Orbital and Superhump Signatures

57   0   0.0 ( 0 )
 نشر من قبل Ethan Neil
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of seven years of K-band monitoring of the low-mass X-ray binary GRS 1915+105. Positive correlations between the infrared flux and the X-ray flux and X-ray hardness are demonstrated. Analysis of the frequency spectrum shows that the orbital period of the system is $P_{orb}= 30.8 pm 0.2$ days. The phase and amplitude of the orbital modulation suggests that the modulation is due to the heating of the face of the secondary star. We also report another periodic signature between 31.2 and 31.6 days, most likely due to a superhump resonance. From the superhump period we then obtain a range on the mass ratio of the system, $0.05 < q < 0.12$.



قيم البحث

اقرأ أيضاً

103 - S. Eikenberry 2000
We present simultaneous infrared and X-ray observations of the Galactic microquasar GRS 1915+105 using the Palomar 5-m telescope and Rossi X-ray Timing Explorer on July 10, 1998 UT. Over the course of 5 hours, we observed 6 faint infrared (IR) flares with peak amplitudes of $sim 0.3-0.6 $ mJy and durations of $sim 500-600 $ seconds. These flares are associated with X-ray soft-dip/soft-flare cycles, as opposed to the brighter IR flares associated with X-ray hard-dip/soft-flare cycles seen in August 1997 by Eikenberry et al. (1998). Interestingly, the IR flares begin {it before} the X-ray oscillations, implying an ``outside-in origin of the IR/X-ray cycle. We also show that the quasi-steady IR excess in August 1997 is due to the pile-up of similar faint flares. We discuss the implications of this flaring behavior for understanding jet formation in microquasars.
103 - Yael Fuchs 2004
We present the international collaboration MINE (Multi-lambda Integral NEtwork) aimed at conducting multi-wavelength observations of X-ray binaries and microquasars simultaneously with the INTEGRAL gamma-ray satellite. We will focus on the 2003 March -April campaign of observations of the peculiar microquasar GRS 1915+105 gathering radio, IR and X-ray data. The source was observed 3 times in the plateau state, before and after a major radio and X-ray flare. It showed strong steady optically thick radio emission corresponding to powerful compact jets resolved in the radio images, bright near-infrared emission, a strong QPO at 2.5 Hz in the X-rays and a power law dominated spectrum without cutoff in the 3-300 keV range. We compare the different observations, their multi-wavelength light curves, including JEM-X, ISGRI and SPI, and the parameters deduced from fitting the spectra obtained with these instruments on board INTEGRAL.
We report infrared observations of the microquasar GRS 1915+105 using the NICMOS instrument of the Hubble Space Telescope during 9 visits in April-June 2003. During epochs of high X-ray/radio activity near the beginning and end of this period, we fin d that the $1.87 $um infrared flux is generally low ($sim 2$ mJy) and relatively steady. However, during the X-ray/radio ``plateau state between these epochs, we find that the infrared flux is significantly higher ($sim 4-6$ mJy), and strongly variable. In particular, we find events with amplitudes $sim 20-30$% occurring on timescales of $sim 10-20$s (e-folding timescales of $sim 30$s). These flickering timescales are several times faster than any previously-observed infrared variability in GRS 1915+105 and the IR variations exceed corresponding X-ray variations at the same ($sim 8s$) timescale. These results suggest an entirely new type of infrared variability from this object. Based on the properties of this flickering, we conclude that it arises in the plateau-state jet outflow itself, at a distance $<2.5$ AU from the accretion disk. We discuss the implications of this work and the potential of further flickering observations for understanding jet formation around black holes.
116 - O. Vilhu , D. Hannikainen 2002
We propose a scenario for a periodic filling and emptying of the accretion disc of GRS 1915+105, by computing the mass transfer rate from the donor and comparing it with the observed accretion rate. The binary parameters found by Greiner et al. (2001 ) predict evolutionary expansion of the donor along the giant branch with a conservative mass transfer rate (1 - 2)E-8 solar masses per year. This reservoir can support the present accretion with a duty cycle 0.05 - 0.1 (the active time as a fraction of the total life time). The viscosity time scale at the circularization radius (15 solar radii from the primary 14 solar mass black hole) is identified as the recurrent quiescent time during which a new disc is formed once consumed by the BH. For small viscosity (alpha = 0.001) it equals to 300 - 400 years. The microquasar phase, with the duty cycle, will last around 10 million years ending with a long period black hole + white dwarf system.
The microquasar GRS 1915+105, exhibits a large variety of characteristic states, according to its luminosity, spectral state, and variability. The most interesting one is the so-called rho-state, whose light curve shows recurrent bursts. This paper p resents a model based on Fitzhugh-Nagumo equations containing two variables: x, linked to the source photon luminosity L detected by the MECS, and y related to the mean photon energy. We aim at providing a simple mathematical framework composed by non-linear differential equations useful to predict the observed light curve and the energy lags for the rho-state and possibly other classes of the source. We studied the equilibrium state and the stability conditions of this system that includes one external parameter, J, that can be considered a function of the disk accretion rate. Our work is based on observations performed with the MECS on board BeppoSAX when the source was in rho and nu mode, respectively. The evolution of the mean count rate and photon energy were derived from a study of the trajectories in the count rate - photon energy plane. Assuming J constant, we found a solution that reproduces the x profile of the rho class bursts and, unexpectedly, we found that y exhibited a time modulation similar to that of the mean energy. Moreover, assuming a slowly modulated J the solutions for x quite similar to those observed in the nu class light curves is reproduced. According these results, the outer mass accretion rate is probably responsible for the state transitions, but within the rho-class it is constant. This finding makes stronger the heuristic meaning of the non-linear model and suggests a simple relation between the variable x and y. However, how a system of dynamical equations can be derived from the complex mathematical apparatus of accretion disks remains to be furtherly explored.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا