ترغب بنشر مسار تعليمي؟ اضغط هنا

The evolution of the galaxy content of dark matter haloes

62   0   0.0 ( 0 )
 نشر من قبل Sergio Contreras
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the halo occupation distribution (HOD) framework to characterise the predictions from two independent galaxy formation models for the galactic content of dark matter haloes and its evolution with redshift. Our galaxy samples correspond to a range of fixed number densities defined by stellar mass and span $0 le z le 3$. We find remarkable similarities between the model predictions. Differences arise at low galaxy number densities which are sensitive to the treatment of heating of the hot halo by active galactic nuclei. The evolution of the form of the HOD can be described in a relatively simple way, and we model each HOD parameter using its value at $z=0$ and an additional evolutionary parameter. In particular, we find that the ratio between the characteristic halo masses for hosting central and satellite galaxies can serve as a sensitive diagnostic for galaxy evolution models. Our results can be used to test and develop empirical studies of galaxy evolution and can facilitate the construction of mock galaxy catalogues for future surveys.



قيم البحث

اقرأ أيضاً

We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these dist ributions and measure the occupation functions for the galaxies they host. We find distinct differences in these occupation functions. The main effect with environment is that central galaxies (and in one model also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass -- halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the satellite galaxies occupation where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations also in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy catalogs. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical models of assembly bias and attempts to detect it in the real universe.
400 - Oliver Newton 2021
The Local Group is a unique environment in which to study the astrophysics of galaxy formation. The proximity of the Milky Way and M31 causes a large fraction of the low-mass halo population to interact with more massive dark matter haloes, which inc reases their concentrations and strips them of gas and other material. Some low-mass haloes pass through the haloes of the Milky Way or M31 and are either ejected into the field or exchanged between the two primary hosts. We use high resolution gas-dynamical simulations to describe a new class of field halo that passed through the haloes of both the Milky Way and M31 at early times and is almost twice as concentrated as isolated field haloes. These Hermeian haloes are distributed anisotropically at greater distances from the Local Group barycentre than the primary haloes and appear to cluster close to the Milky Way and M31 in projection. We show that some Hermeian haloes can host galaxies that are promising targets for indirect dark matter searches and are competitive with signals from other dwarf galaxies. Hermeian galaxies in the Local Group should be detectable by forthcoming wide-field imaging surveys.
406 - Ying Zu , Rachel Mandelbaum 2015
We develop a simple yet comprehensive method to distinguish the underlying drivers of galaxy quenching, using the clustering and galaxy-galaxy lensing of red and blue galaxies in SDSS. Building on the iHOD framework developed by Zu & Mandelbaum (2015 a), we consider two quenching scenarios: 1) a halo quenching model in which halo mass is the sole driver for turning off star formation in both centrals and satellites; and 2) a hybrid quenching model in which the quenched fraction of galaxies depends on their stellar mass while the satellite quenching has an extra dependence on halo mass. The two best-fit models describe the red galaxy clustering and lensing equally well, but halo quenching provides significantly better fits to the blue galaxies above $10^{11} M_odot/h^2$. The halo quenching model also correctly predicts the average halo mass of the red and blue centrals, showing excellent agreement with the direct weak lensing measurements of locally brightest galaxies. Models in which quenching is not tied to halo mass, including an age-matching model in which galaxy colour depends on halo age at fixed $M_*$, fail to reproduce the observed halo mass for massive blue centrals. We find similar critical halo masses responsible for the quenching of centrals and satellites (~$1.5times10^{12} Modot/h^2$), hinting at a uniform quenching mechanism for both, e.g., the virial shock-heating of infalling gas. The success of the iHOD halo quenching model provides strong evidence that the physical mechanism that quenches star formation in galaxies is tied principally to the masses of their dark matter halos rather than the properties of their stellar components.
113 - Aaron D. Ludlow 2019
We address the issue of numerical convergence in cosmological smoothed particle hydrodynamics simulations using a suite of runs drawn from the EAGLE project. Our simulations adopt subgrid models that produce realistic galaxy populations at a fiducial mass and force resolution, but systematically vary the latter in order to study their impact on galaxy properties. We provide several analytic criteria that help guide the selection of gravitational softening for hydrodynamical simulations, and present results from runs that both adhere to and deviate from them. Unlike dark matter-only simulations, hydrodynamical simulations exhibit a strong sensitivity to gravitational softening, and care must be taken when selecting numerical parameters. Our results--which focus mainly on star formation histories, galaxy stellar mass functions and sizes--illuminate three main considerations. First, softening imposes a minimum resolved escape speed, $v_epsilon$, due to the binding energy between gas particles. Runs that adopt such small softening lengths that $v_epsilon gt 10,{rm km s^{-1}}$ (the sound speed in ionised $sim 10^4,{rm K}$ gas) suffer from reduced effects of photo-heating. Second, feedback from stars or active galactic nuclei may suffer from numerical over-cooling if the gravitational softening length is chosen below a critical value, $epsilon_{rm eFB}$. Third, we note that small softening lengths exacerbate the segregation of stars and dark matter particles in halo centres, often leading to the counter-intuitive result that galaxy sizes {em increase} as softening is reduced. The structure of dark matter haloes in hydrodynamical runs respond to softening in a way that reflects the sensitivity of their galaxy populations to numerical parameters.
136 - Ying Zu , Rachel Mandelbaum 2017
Recent studies suggest that the quenching properties of galaxies are correlated over several mega-parsecs. The large-scale galactic conformity phenomenon around central galaxies has been regarded as a potential signature of galaxy assembly bias or pr e-heating, both of which interpret conformity as a result of direct environmental effects acting on galaxy formation. Building on the iHOD halo quenching framework developed in Zu & Mandelbaum (2015, 2016), we discover that our fiducial halo mass quenching model, without any galaxy assembly bias, can successfully explain the overall environmental dependence and the conformity of galaxy colours in SDSS, as measured by the mark correlation functions of galaxy colours and the red galaxy fractions around isolated primaries, respectively. Our fiducial iHOD halo quenching mock also correctly predicts the differences in the spatial clustering and galaxy-galaxy lensing signals between the more vs. less red galaxy subsamples, split by the red-sequence ridge-line at fixed stellar mass. Meanwhile, models that tie galaxy colours fully or partially to halo assembly bias have difficulties in matching all these observables simultaneously. Therefore, we demonstrate that the observed environmental dependence of galaxy colours can be naturally explained by the combination of 1) halo quenching and 2) the variation of halo mass function with environment --- an indirect environmental effect mediated by two separate physical processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا