ترغب بنشر مسار تعليمي؟ اضغط هنا

A Massive Bipolar Outflow and a Dusty Torus with Large Grains in the Pre-Planetary Nebula IRAS 22036+5306

69   0   0.0 ( 0 )
 نشر من قبل Raghvendra Sahai
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report high angular-resolution (~1) CO J=3--2 interferometric mapping, using the Submillimeter Array (SMA), of IRAS22036+5306 (I22036), a bipolar pre-planetary nebula (PPN) with knotty jets discovered in our HST SNAPshot survey of young PPNs. In addition, we have obtained supporting lower-resolution (~10) CO and 13CO J=1-0 observations with the Owens Valley Radio Observatory (OVRO) interferometer, as well as optical long-slit echelle spectra at the Palomar Observatory. The CO J=3-2 observations show the presence of a very fast (~220 km/s), highly collimated, massive (0.03 Msun) bipolar outflow with a very large scalar momentum (about 10^{39} g cm s^{-1}), and the characteristic spatio-kinematic structure of bow-shocks at the tips of this outflow. The Halpha line shows an absorption feature blue-shifted from the systemic velocity by ~100 km/s, which most likely arises in neutral interface material between the fast outflow and the dense walls of the bipolar lobes at low latitudes. The fast outflow in I22036, as in most PPNs, cannot be driven by radiation pressure. We find an unresolved source of submillimeter (and millimeter-wave) continuum emission in I22036, implying a very substantial mass (0.02-0.04 Msun) of large (radius >~1 mm), cold (< ~50 K) dust grains associated with I22036s toroidal waist. We also find that the 13C/12C ratio in I22036 is very high (0.16), close to the maximum value achieved in equilibrium CNO-nucleosynthesis (0.33). The combination of the high circumstellar mass (i.e., in the extended dust shell and the torus) and the high 13C/12C ratio in I22036 provides strong support for this object having evolved from a massive (>~4 Msun) progenitor in which hot-bottom-burning has occurred.

قيم البحث

اقرأ أيضاً

405 - D. Tafoya , Y. Gomez , N. A. Patel 2008
We present observations of continuum (lambda = 0.7, 1.3, 3.6 and 18 cm) and OH maser (lambda = 18 cm) emission toward the young planetary nebula IRAS 17347-3139, which is one of the three planetary nebulae that are known to harbor water maser emissio n. From the continuum observations we show that the ionized shell of IRAS 17347-3139 consists of two main structures: one extended (size ~1. 5) with bipolar morphology along PA=-30 degrees, elongated in the same direction as the lobes observed in the near-infrared images, and a central compact structure (size ~0. 25) elongated in the direction perpendicular to the bipolar axis, coinciding with the equatorial dark lane observed in the near-infrared images. Our image at 1.3 cm suggests the presence of dense walls in the ionized bipolar lobes. We estimate for the central compact structure a value of the electron density at least ~5 times higher than in the lobes. A high resolution image of this structure at 0.7 cm shows two peaks separated by about 0. 13 (corresponding to 100-780 AU, using a distance range of 0.8-6 kpc). This emission is interpreted as originating in an ionized equatorial torus-like structure, from whose edges the water maser emission might be arising. We have detected weak OH 1612 MHz maser emission at VLSR ~ -70 km/s associated with IRAS 17347-3139. We derive a 3 sigma upper limit of < 35% for the percentage of circularly polarized emission. Within our primary beam, we detected additional OH 1612 MHz maser emission in the LSR velocity ranges -5 to -24 and -90 to -123 km/s, associated with the sources 2MASS J17380406-3138387 and OH 356.65-0.15, respectively.
We have mapped 12CO J=3-2 and other molecular lines from the water-fountain bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ~0.35 resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high- density (> few x 10^6 cm^{-3}), expanding torus of diameter 1300 AU, and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to >3.5 x 10^{-4} Msun/yr in the past ~455 yr. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally-emitting dust, implies a substantial mass (0.017 Msun) of very large (~mm-sized) grains. The measured expansion ages of the above structural components imply that the torus (age~160 yr) and the younger high-velocity outflow (age~110 yr) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common envelope evolution are needed.
Current models predict that binary interactions are a major ingredient for the formation of bipolar planetary nebulae (PNe) and pre-planetary nebulae (PPNe). Despite years of radial velocity (RV) monitoring, the paucity of known binaries amongst the latter systems is insufficient to examine this relationship in detail. In this paper, we report on the discovery of a long period (P=2654$pm$124 d) binary at the centre of the Galactic bipolar PPN, IRAS 08005-2356 (V510 Pup) determined from long-term spectroscopic and near-infrared time series data. The spectroscopic orbit is fit with an eccentricity of 0.36$pm$0.05 that is similar to other long period post-AGB binaries. Time resolved H$alpha$ profiles reveal high-velocity outflows (jets) with de-projected velocities up to 231$_{-27}^{+31}$ km s$^{-1}$ seen at phases when the luminous primary is behind the jet. The outflow traced by H$alpha$ is likely produced via accretion onto a main sequence companion for which we calculate a mass of 0.63$pm$0.13 M$_odot$. This discovery is one of the first cases of a confirmed binary PPN and demonstrates the importance of high-resolution spectroscopic monitoring surveys on large telescopes in revealing binarity among these systems.
89 - Moshe Elitzur 2008
Toroidal obscuration is a keystone of AGN unification. There is now direct evidence for the torus emission in infrared, and possibly water masers. Here I summarize the torus properties, its possible relation to the immediate molecular environment of the AGN and present some speculations on how it might evolve with the AGN luminosity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا