ترغب بنشر مسار تعليمي؟ اضغط هنا

Disk-outflow Connection and the Molecular Dusty Torus

192   0   0.0 ( 0 )
 نشر من قبل Moshe Elitzur
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Moshe Elitzur




اسأل ChatGPT حول البحث

Toroidal obscuration is a keystone of AGN unification. There is now direct evidence for the torus emission in infrared, and possibly water masers. Here I summarize the torus properties, its possible relation to the immediate molecular environment of the AGN and present some speculations on how it might evolve with the AGN luminosity.



قيم البحث

اقرأ أيضاً

259 - K. R. W. Tristram 2013
(Abridged) With infrared interferometry it is possible to resolve the nuclear dust distributions that are commonly associated with the dusty torus in active galactic nuclei (AGN). The Circinus galaxy hosts the closest Seyfert 2 nucleus and previous i nterferometric observations have shown that its nuclear dust emission is well resolved. To better constrain the dust morphology in this active nucleus, extensive new observations were carried out with MIDI at the Very Large Telescope Interferometer. The emission is distributed in two distinct components: a disk-like emission component with a size of ~ 0.2 $times$ 1.1 pc and an extended component with a size of ~ 0.8 $times$ 1.9 pc. The disk-like component is elongated along PA ~ 46{deg} and oriented perpendicular to the ionisation cone and outflow. The extended component is elongated along PA ~ 107{deg}, roughly perpendicular to the disk component and thus in polar direction. It is interpreted as emission from the inner funnel of an extended dust distribution and shows a strong increase in the extinction towards the south-east. We find no evidence of an increase in the temperature of the dust towards the centre. From this we infer that most of the near-infrared emission probably comes from parsec scales as well. We further argue that the disk component alone is not sufficient to provide the necessary obscuration and collimation of the ionising radiation and outflow. The material responsible for this must instead be located on scales of ~ 1 pc, surrounding the disk. The clear separation of the dust emission into a disk-like emitter and a polar elongated source will require an adaptation of our current understanding of the dust emission in AGN. The lack of any evidence of an increase in the dust temperature towards the centre poses a challenge for the picture of a centrally heated dust distribution.
We present the first results of the Galaxy Activity, Torus and Outflow Survey (GATOS), a project aimed at understanding the properties of the dusty molecular tori and their connection to the host galaxy in nearby Seyfert galaxies. Our project expands the range of AGN luminosities and Eddington ratios covered by previous surveys of Seyferts conducted by ALMA and allows us to study the gas feeding and feedback cycle in a combined sample of 19 Seyferts. We used ALMA to obtain new images of the emission of molecular gas and dust using the CO(3-2) and HCO+(4-3) lines as well as their underlying continuum emission at 870 microns with high spatial resolutions (0.1 ~ 7 - 13 pc) in the CND of 10 nearby (D < 28 Mpc) Seyfert galaxies. Our new ALMA observations detect 870 micron continuum and CO line emission from spatially resolved disks located around the AGN in all the sources. The bulk of the continuum flux can be accounted for by thermal emission from dust in the majority of the targets. For most of the sources the disks show a preponderant orientation perpendicular to the AGN wind axes, as expected for dusty molecular tori. The median diameters and molecular gas masses of the tori are ~ 42 pc, and ~ 6 x 10**5 Msun, respectively. We find a positive correlation between the line-of-sight gas column densities responsible for the absorption of X-rays and the molecular gas column densities derived from CO towards the AGN in our sources. The radial distributions of molecular gas in the CND of our combined sample show signs of nuclear-scale molecular gas deficits. We also detect molecular outflows in the sources that show the most extreme nuclear-scale gas deficits in our sample. These observations find for the first time supporting evidence that the imprint of AGN feedback is more extreme in higher luminosity and/or higher Eddington ratio Seyfert galaxies.
58 - Felipe O. Alves 2017
One of the long-standing problems of star formation is the excess of angular momentum of the parent molecular cloud. In the classical picture, a fraction of angular momentum of the circumstellar material is removed by the magneto-centrifugally driven disk wind that is launched from a wide region throughout the disk. In this work, we investigate the kinematics in the envelope-disk transition zone of the Class I object BHB07-11, in the B59 core. For this purpose, we used the Atacama Large Millimeter/submillimeter Array in extended configuration to observe the thermal dust continuum emission ($lambda_0 sim$ 1.3 mm) and molecular lines (CO, C$^{18}$O and H$_2$CO), which are suitable tracers of disk, envelope, and outflow dynamics at a spatial resolution of $sim 30$ AU. We report a bipolar outflow that was launched at symmetric positions with respect to the disk ($sim$80~AU in radius), but was concentrated at a distance of 90--130~AU from the disk center. The two outflow lobes had a conical shape and the gas inside was accelerating. The large offset of the launching position coincided with the landing site of the infall material from the extended spiral structure (seen in dust) onto the disk. This indicates that bipolar outflows are efficiently launched within a narrow region outside the disk edge. We also identify a sharp transition in the gas kinematics across the tip of the spiral structure, which pinpoints the location of the so-called centrifugal barrier.
We present 1.4 pc resolution observations of 256 GHz nuclear radio continuum and HCN ($J=3 to 2$) in the molecular torus of NGC 1068. The integrated radio continuum emission has a flat spectrum consistent with free-free emission and resolves into an X-shaped structure resembling an edge-brightened bicone. HCN is detected in absorption against the continuum, and the absorption spectrum shows a pronounced blue wing that suggests a high-velocity molecular outflow with speeds reaching 450 km/s. Analysis of the off-nucleus emission line kinematics and morphology reveals two nested, rotating disk components. The inner disk, inside $rsim 1.2$ pc, has kinematics consistent with the nearly edge-on, geometrically thin water megamaser disk in Keplerian rotation around a central mass of $1.66times 10^7,mbox{M}_odot$. The outer disk, which extends to $sim 7$~pc radius, counter-rotates relative to the inner disk. The rotation curve of the outer disk is consistent with rotation around the same central mass as the megamaser disk but in the opposite sense. The morphology of the molecular gas is asymmetric around the nuclear continuum source. We speculate that the outer disk formed from more recently introduced molecular gas falling out of the host galaxy or from a captured dwarf satellite galaxy. In NGC 1068, we find direct evidence that the molecular torus consists of counter-rotating and misaligned disks on parsec scales.
Galaxies grow inefficiently, with only a few percent of the available gas converted into stars each free-fall time. Feedback processes, such as outflowing winds driven by radiation pressure, supernovae or supermassive black hole accretion, can act to halt star formation if they heat or expel the gas supply. We report a molecular outflow launched from a dust-rich star-forming galaxy at redshift 5.3, one billion years after the Big Bang. The outflow reaches velocities up to 800 km/s relative to the galaxy, is resolved into multiple clumps, and carries mass at a rate within a factor of two of the star formation rate. Our results show that molecular outflows can remove a large fraction of the gas available for star formation from galaxies at high redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا