ﻻ يوجد ملخص باللغة العربية
We present an analytical treatment of gravitational lensing by a Kerr black hole in the weak deflection limit. Lightlike geodesics are expanded as a Taylor series up to and including third-order terms in m/b and a/b, where m is the black hole mass, a the angular momentum and b the impact parameter of the light ray. Positions and magnifications of individual images are computed with a perturbative analysis. At this order, the degeneracy with the translated Schwarzschild lens is broken. The critical curve is still a circle displaced from the black hole position in the equatorial direction and the corresponding caustic is point-like. The degeneracy between the black hole spin and its inclination relative to the observer is broken through the angular coordinates of the perturbed images.
We present a new upper limit on the energy that may be extracted from a Kerr black hole by means of particle collisions in the ergosphere (i.e., the collisional Penrose process). Earlier work on this subject has focused largely on particles with crit
The gravitational field of supermassive black holes is able to strongly bend light rays emitted by nearby sources. When the deflection angle exceeds $pi$, gravitational lensing can be analytically approximated by the so-called strong deflection limit
A perturbative method to compute the deflection angle of both timelike and null rays in arbitrary static and spherically symmetric spacetimes in the strong field limit is proposed. The result takes a quasi-series form of $(1-b_c/b)$ where $b$ is the
We propose a set of diffeomorphism that act non-trivially near the horizon of the Kerr black hole. We follow the recent developments of Haco-Hawking-Perry-Strominger to quantify this phase space, with the most substantial difference being our choice
In this paper, we present the weak deflection angle in a Schwarzschild black hole of mass $m$ surrounded by the dark matter of mass $M$ and thickness $Delta r_{s}$. The Gauss-Bonnet theorem, formulated for asymptotic spacetimes, is found to be ill-be