ﻻ يوجد ملخص باللغة العربية
In this paper, we present the weak deflection angle in a Schwarzschild black hole of mass $m$ surrounded by the dark matter of mass $M$ and thickness $Delta r_{s}$. The Gauss-Bonnet theorem, formulated for asymptotic spacetimes, is found to be ill-behaved in the third-order of $1/Delta r_{s}$ for very large $Delta r_{s}$. Using the finite-distance for the radial locations of the source and the receiver, we derived the expression for the weak deflection angle up to the third-order of $1/Delta r_{s}$ using Ishihara (textit{et al.}) method. The result showed that the required dark matter thickness is $sim2sqrt{3mM}$ for the deviations in the weak deflection angle to occur. Such thickness requirement is better by a factor of 2 as compared to the deviations in the shadow radius ($simsqrt{3mM}$). It implies that the use of the weak deflection angle in detecting dark matter effects in ones galaxy is better than using any deviations in the shadow radius.
We discussed the possible effects of dark matter on a Schwarzschild black hole with extended uncertainty principle (EUP) correction such as the parameter $alpha$ and the large fundamental length scale $L_*$. We surrounded the EUP black hole of mass $
In this paper, we examine the effect of dark matter to a Kerr black hole of mass $m$. The metric is derived using the Newman-Janis algorithm, where the seed metric originates from the Schwarzschild black hole surrounded by a spherical shell of dark m
A perturbative method to compute the deflection angle of both timelike and null rays in arbitrary static and spherically symmetric spacetimes in the strong field limit is proposed. The result takes a quasi-series form of $(1-b_c/b)$ where $b$ is the
A modified Hayward black hole is a nonsingular black hole. It is proposed to form when the pressure generated by quantum gravity can stop matters collapse as the matter reaches Planck density. Strong deflection gravitational lensing happening nearby
The gravitational field of supermassive black holes is able to strongly bend light rays emitted by nearby sources. When the deflection angle exceeds $pi$, gravitational lensing can be analytically approximated by the so-called strong deflection limit