ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of RR Lyrae stars in the inner regions of the Large Magellanic Cloud. II. The extended sample

96   0   0.0 ( 0 )
 نشر من قبل Jordanka Borissova
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

All galaxies that have been adequately examined so far have shown an extended stellar halo. To search for such a halo in the LMC we have obtained low-resolution spectra for 100 LMC RR Lyrae stars, of which 87 are in the field and 13 in the clusters NGC1835 and NGC2019. We measured radial velocities for 87 LMC RR Lyrae stars, and metallicities for 78 RR Lyrae stars, nearly tripling the previous sample. These targets are located in 10 fields covering a wide range of distances, out to 2.5 degrees from the center of the LMC. Our main result is that the mean velocity dispersion for the LMC RR Lyrae stars is 50+-2km/s. This quantity does not appear to vary with distance from the LMC center. The metallicity shows a Gaussian distribution, with mean [Fe/H]=-1.53+-0.02dex, and dispersion 0.20 dex in the Harris metallicity scale, confirming that they represent a very homogeneous metal-poor population. There is no dependence between the kinematics and metallicity of the field RR Lyrae star population. Using good quality low-resolution spectra from FORS1, FORS2 and GEMINI-GMOS we have found that field RR Lyrae stars in the LMC show a large velocity dispersion and that this indicate the presence of old and metal-poor stellar halo. All the evidence so far for the halo, however, is from the spectroscopy of the inner LMC regions, similar to the inner flattened halo in our Galaxy. Further study is necessary to confirm this important result.



قيم البحث

اقرأ أيضاً

78 - R.G. Gratton 2004
Metallicities ([Fe/H]) from low resolution spectroscopy obtained with the Very Large Telescope (VLT) are presented for 98 RR Lyrae and 3 short period Cepheids in the bar of the Large Magellanic Cloud. Our metal abundances have typical errors of +/-0. 17 dex. The average metallicity of the RR Lyrae stars is [Fe/H]=-1.48 +/- 0.03 +/- 0.06 on the scale of Harris (1996). The star-to-star scatter (0.29 dex) is larger than the observational errors, indicating a real spread in metal abundances. The derived metallicities cover the range -2.12 < [Fe/H] <-0.27, but there are only a few stars having [Fe/H] > -1. For the ab-type variables we compared our spectroscopic abundances with those obtained from the Fourier decomposition of the light curves. We find good agreement between the two techniques, once the systematic offset of 0.2 dex between the metallicity scales used in the two methods is taken into account. The spectroscopic metallicities were combined with the dereddened apparent magnitudes of the variables to derive the slope of the luminosity-metallicity relation for the LMC RR Lyrae stars: the resulting value is 0.214 +/- 0.047 mag/dex. Finally, the 3 short period Cepheids have [Fe/H] values in the range -2.0 < [Fe/H] <-1.5 . They are more metal-poor than typical LMC RR Lyrae stars, thus they are more likely to be Anomalous Cepheids rather than the short period Classical Cepheids that are being found in a number of dwarf Irregular galaxies.
We present results from the analysis of 2997 fundamental mode RR Lyrae variables located in the Small Magellanic Cloud (SMC). For these objects near-infrared time-series photometry from the VISTA survey of the Magellanic Clouds system (VMC) and visua l light curves from the OGLE IV survey are available. In this study the multi-epoch $K_{rm s}$-band VMC photometry was used for the first time to derive intensity-averaged magnitudes of the SMC RR Lyrae stars. We determined individual distances to the RR Lyrae stars from the near-infrared period-absolute magnitude-metallicity ($PM_{K_{rm s}}Z$) relation, which has a number of advantages in comparison with the visual absolute magnitude-metallicity ($M_{V}-{rm [Fe/H]}$) relation, such as a smaller dependence of the luminosity on interstellar extinction, evolutionary effects and metallicity. The distances we have obtained were used to study the three-dimensional structure of the SMC. The distribution of the SMC RR Lyrae stars is found to be ellipsoidal. The actual line-of-sight depth of the SMC is in the range from 1 to 10 kpc, with an average depth of 4.3 $pm$ 1.0 kpc. We found that RR Lyrae stars in the eastern part of the SMC are affected by interactions of the Magellanic Clouds. However, we do not see a clear bimodality in the distribution of RR Lyrae stars as observed for red clump (RC) stars.
We combine the Siding Spring Survey of RR Lyrae stars with the Southern Proper Motion Catalog 4, in order to detect and kinematically characterize overdensities in the inner halo of the Milky Way. We identify one such overdensity above the Galactic p lane, in quadrant 4 of the Galaxy. The overdensity extends at least 20 degrees in longitude, has an average heliocentric distance of 8 kpc with a depth of 4 kpc, and is confined within 4 kpc of the Galactic plane. Its metallicity distribution is distinct from that of the field population having a peak at -1.3 and a pronounced tail to -2.0. Proper motions indicate a net vertical motion away from the plane, and a low orbital angular momentum. Qualitatively, these orbit properties suggest a possible association with omega Centauris parent satellite. However, comparison to a specific omega Cen N-body disruption model does not give a good match with observations. Line-of-sight velocities, and more extensive N-body modelling will help clarify the nature of this overdensity.
We present results from an analysis of $sim$ 29,000 RR Lyrae stars located in the Large Magellanic Cloud (LMC). For these objects, near-infrared time-series photometry from the VISTA survey of the Magellanic Clouds system (VMC) and optical data from the OGLE (Optical Gravitational Lensing Experiment) IV survey and the Gaia Data Release 2 catalogue of confirmed RR Lyrae stars were exploited. Using VMC and OGLE IV magnitudes we derived period-luminosity (PL), period-luminosity-metallicity (PLZ), period-Wesenheit (PW) and period-Wesenheit-metallicity (PWZ) relations in all available bands. More that ~7,000 RR Lyrae were discarded from the analysis because they appear to be overluminous with respect to the PL relations. The $PL_{K_{mathrm{s}}}$ relation was used to derive individual distance to $sim 22,000$ RR Lyrae stars, and study the three-dimensional structure of the LMC. The distribution of the LMC RR Lyrae stars is ellipsoidal with the three axis $S_1$=6.5 kpc, $S_2$=4.6 kpc and $S_3$=3.7 kpc, inclination i=$22pm4^{circ }$ relative to the plane of the sky and position angle of the line of nodes $theta=167pm7^{circ }$ (measured from north to east). The north-eastern part of the ellipsoid is closer to us and no particular associated substructures are detected as well as any metallicity gradient.
We have obtained deep infrared $J$ and $K$ band observations of five fields located in the Large Magellanic Cloud (LMC) bar with the ESO New Technology Telescope equipped with the SOFI infrared camera. In our fields, 65 RR Lyrae stars catalogued by t he OGLE collaboration were identified. Using different theoretical and empirical calibrations of the period-luminosity-metallicity relation, we find consistent LMC distance moduli values. Since the observed fields are situated very close to the center of the LMC, the correction for the tilt of the LMC bar with respect to the line of sight is negligible. Our adopted best true distance modulus to the LMC of $18.58 pm 0.03$ (statistical) $pm$ 0.11 (systematic) mag agrees very well with most independent determinations to this galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا