ترغب بنشر مسار تعليمي؟ اضغط هنا

The VMC Survey -- XLII. Near-infrared period-luminosity relations for RR Lyrae stars and the structure of the Large Magellanic Cloud

203   0   0.0 ( 0 )
 نشر من قبل Felice Cusano
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from an analysis of $sim$ 29,000 RR Lyrae stars located in the Large Magellanic Cloud (LMC). For these objects, near-infrared time-series photometry from the VISTA survey of the Magellanic Clouds system (VMC) and optical data from the OGLE (Optical Gravitational Lensing Experiment) IV survey and the Gaia Data Release 2 catalogue of confirmed RR Lyrae stars were exploited. Using VMC and OGLE IV magnitudes we derived period-luminosity (PL), period-luminosity-metallicity (PLZ), period-Wesenheit (PW) and period-Wesenheit-metallicity (PWZ) relations in all available bands. More that ~7,000 RR Lyrae were discarded from the analysis because they appear to be overluminous with respect to the PL relations. The $PL_{K_{mathrm{s}}}$ relation was used to derive individual distance to $sim 22,000$ RR Lyrae stars, and study the three-dimensional structure of the LMC. The distribution of the LMC RR Lyrae stars is ellipsoidal with the three axis $S_1$=6.5 kpc, $S_2$=4.6 kpc and $S_3$=3.7 kpc, inclination i=$22pm4^{circ }$ relative to the plane of the sky and position angle of the line of nodes $theta=167pm7^{circ }$ (measured from north to east). The north-eastern part of the ellipsoid is closer to us and no particular associated substructures are detected as well as any metallicity gradient.

قيم البحث

اقرأ أيضاً

We present results from the analysis of 2997 fundamental mode RR Lyrae variables located in the Small Magellanic Cloud (SMC). For these objects near-infrared time-series photometry from the VISTA survey of the Magellanic Clouds system (VMC) and visua l light curves from the OGLE IV survey are available. In this study the multi-epoch $K_{rm s}$-band VMC photometry was used for the first time to derive intensity-averaged magnitudes of the SMC RR Lyrae stars. We determined individual distances to the RR Lyrae stars from the near-infrared period-absolute magnitude-metallicity ($PM_{K_{rm s}}Z$) relation, which has a number of advantages in comparison with the visual absolute magnitude-metallicity ($M_{V}-{rm [Fe/H]}$) relation, such as a smaller dependence of the luminosity on interstellar extinction, evolutionary effects and metallicity. The distances we have obtained were used to study the three-dimensional structure of the SMC. The distribution of the SMC RR Lyrae stars is found to be ellipsoidal. The actual line-of-sight depth of the SMC is in the range from 1 to 10 kpc, with an average depth of 4.3 $pm$ 1.0 kpc. We found that RR Lyrae stars in the eastern part of the SMC are affected by interactions of the Magellanic Clouds. However, we do not see a clear bimodality in the distribution of RR Lyrae stars as observed for red clump (RC) stars.
We present results of the analysis of 70 RR Lyrae stars located in the bar of the Large Magellanic Cloud (LMC). Combining spectroscopically determined metallicity of these stars from the literature with precise periods from the OGLE III catalogue and multi-epoch $K_{rm s}$ photometry from the VISTA survey of the Magellanic Clouds system (VMC), we derive a new near-infrared period-luminosity-metallicity (${rm PL_{K_{rm s}}Z}$) relation for RR Lyrae variables. In order to fit the relation we use a fitting method developed specifically for this study. The zero-point of the relation is estimated in two different ways: by assuming the value of the distance to the LMC and by using Hubble Space Telescope (HST) parallaxes of five RR Lyrae stars in the Milky Way (MW). The difference in distance moduli derived by applying these two approaches is $sim0.2$ mag. To investigate this point further we derive the ${rm PL_{K_{rm s}}Z}$ relation based on 23 MW RR Lyrae stars which had been analysed in Baade-Wesselink studies. We compared the derived ${rm PL_{K_{rm s}}Z}$ relations for RR Lyrae stars in the MW and LMC. Slopes and zero-points are different, but still consistent within the errors. The shallow slope of the metallicity term is confirmed by both LMC and MW variables. The astrometric space mission Gaia is expected to provide a huge contribution to the determination of the RR Lyrae ${rm PL_{K_{rm s}}Z}$ relation, however, calculating an absolute magnitude from the trigonometric parallax of each star and fitting a ${rm PL_{K_{rm s}}Z}$ relation directly to period and absolute magnitude leads to biased results. We present a tool to achieve an unbiased solution by modelling the data and inferring the slope and zero-point of the relation via statistical methods.
We study the near-infrared properties of 690 Mira candidates in the central region of the Large Magellanic Cloud, based on time-series observations at JHKs. We use densely-sampled I-band observations from the OGLE project to generate template light c urves in the near infrared and derive robust mean magnitudes at those wavelengths. We obtain near-infrared Period-Luminosity relations for Oxygen-rich Miras with a scatter as low as 0.12 mag at Ks. We study the Period-Luminosity-Color relations and the color excesses of Carbon-rich Miras, which show evidence for a substantially different reddening law.
We analysed 30 RR Lyrae stars (RRLs) located in the Large Magellanic Cloud (LMC) globular cluster Reticulum that were observed in the 3.6 and 4.5 $mu$m passbands with the Infrared Array Camera (IRAC) on board of the Spitzer Space Telescope. We derive d new mid-infrared (MIR) period-luminosity PL relations. The zero points of the PL relations were estimated using the trigonometric parallaxes of five bright Milky Way (MW) RRLs measured with the Hubble Space Telescope (HST) and, as an alternative, we used the trigonometric parallaxes published in the first Gaia data release (DR1) which were obtained as part of the Tycho-Gaia Astrometric Solution (TGAS) and the parallaxes of the same stars released with the second Gaia data release (DR2). We determined the distance to Reticulum using our new MIR PL relations and found that distances calibrated on the TGAS and DR2 parallaxes are in a good agreement and, generally, smaller than distances based on the HST parallaxes, although they are still consistent within the respective errors. We conclude that Reticulum is located ~3 kpc closer to us than the barycentre of the LMC.
We combine variability information from the MAssive Compact Halo Objects (MACHO) survey of the Large Magellanic Cloud (LMC) with infrared photometry from the Spitzer Space Telescope Surveying the Agents of a Galaxys Evolution (SAGE) survey to create a dataset of ~30 000 variable red sources. We photometrically classify these sources as being on the first ascent of the Red Giant Branch (RGB), or as being in one of three stages along the Asymptotic Giant Branch (AGB): oxygen-rich, carbon-rich, or highly reddened with indeterminate chemistry (extreme AGB candidates). We present linear period-luminosity relationships for these sources using 8 separate infrared bands (J, H, K, 3.6, 4.5, 5.8, 8.0, and 24 micron) as proxies for the luminosity. We find that the wavelength dependence of the slope of the period-luminosity relationship is different for different photometrically determined classes of AGB stars. Stars photometrically classified as O-rich show the least variation of slope with wavelength, while dust enshrouded extreme AGB stars show a pronounced trend toward steeper slopes with increasing wavelength. We find that O-rich AGB stars pulsating in the fundamental mode obey a period-magnitude relation with a slope of -3.41 +/- 0.04 when magnitude is measured in the 3.6 micron band, in contrast to C-rich AGB stars, which obey a relation of slope -3.77 +/- 0.05.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا