ترغب بنشر مسار تعليمي؟ اضغط هنا

The survival and disruption of CDM micro-haloes: implications for direct and indirect detection experiments

104   0   0.0 ( 0 )
 نشر من قبل Tobias Goerdt
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tobias Goerdt




اسأل ChatGPT حول البحث

If the dark matter particle is a neutralino then the first structures to form are cuspy cold dark matter (CDM) haloes collapsing after redshifts z ~ 100 in the mass range 10^{-6} - 10^{-3} Msun. We carry out a detailed study of the survival of these micro-haloes in the Galaxy as they experience tidal encounters with stars, molecular clouds, and other dark matter substructures. We test the validity of analytic impulsive heating calculations using high resolution N-body simulations. A major limitation of analytic estimates is that mean energy inputs are compared to mean binding energies, instead of the actual mass lost from the system. This energy criterion leads to an overestimate of the stripped mass and underestimate of the disruption timescale since CDM haloes are strongly bound in their inner parts. We show that a significant fraction of material from CDM micro-haloes can be unbound by encounters with Galactic substructure and stars, however the cuspy central regions remain relatively intact. Furthermore, the micro-haloes near the solar radius are those which collapse significantly earlier than average and will suffer very little mass loss. Thus we expect a fraction of surviving bound micro-haloes, a smooth component with narrow features in phase space, which may be uncovered by direct detection experiments, as well as numerous surviving cuspy cores with proper motions of arc-minutes per year, which can be detected indirectly via their annihilation into gamma-rays.

قيم البحث

اقرأ أيضاً

We devise a method to measure the abundance of satellite halos in gravitational lens galaxies, and apply our method to a sample of 7 lens systems. After using Monte Carlo simulations to verify the method, we find that substructure comprises fraction f=0.02 (median, 0.006<f<0.07 at 90% confidence) of the mass of typical lens galaxies, in excellent agreement with predictions of CDM simulations. We estimate a characteristic critical radius for the satellites of 0.0001<b/arcsec<0.006 (90% confidence). For a satellite mass function of dn/dM M^x with x=-1.8 and M_l<M<M_h, the critical radius provides an estimate that the upper mass limit is 10^6Msun < M_h < 10^9Msun. Our measurement confirms a generic prediction of CDM models, and may obviate the need to invoke alternatives to CDM like warm dark matter or self-interacting dark matter.
Detecting dark matter as it streams through detectors on Earth relies on knowledge of its phase space density on a scale comparable to the size of our solar system. Numerical simulations predict that our Galactic halo contains an enormous hierarchy o f substructures, streams and caustics, the remnants of the merging hierarchy that began with tiny Earth mass microhalos. If these bound or coherent structures persist until the present time, they could dramatically alter signatures for the detection of weakly interacting elementary particle dark matter (WIMP). Using numerical simulations that follow the coarse grained tidal disruption within the Galactic potential and fine grained heating from stellar encounters, we find that microhalos, streams and caustics have a negligible likelihood of impacting direct detection signatures implying that dark matter constraints derived using simple smooth halo models are relatively robust. We also find that many dense central cusps survive, yielding a small enhancement in the signal for indirect detection experiments.
Online experimentation is at the core of Booking.coms customer-centric product development. While randomised controlled trials are a powerful tool for estimating the overall effects of product changes on business metrics, they often fall short in exp laining the mechanism of change. This becomes problematic when decision-making depends on being able to distinguish between the direct effect of a treatment on some outcome variable and its indirect effect via a mediator variable. In this paper, we demonstrate the need for mediation analyses in online experimentation, and use simulated data to show how these methods help identify and estimate direct causal effect. Failing to take into account all confounders can lead to biased estimates, so we include sensitivity analyses to help gauge the robustness of estimates to missing causal factors.
We discuss causal mediation analyses for survival data and propose a new approach based on the additive hazards model. The emphasis is on a dynamic point of view, that is, understanding how the direct and indirect effects develop over time. Hence, im portantly, we allow for a time varying mediator. To define direct and indirect effects in such a longitudinal survival setting we take an interventional approach (Didelez (2018)) where treatment is separated into one aspect affecting the mediator and a different aspect affecting survival. In general, this leads to a version of the non-parametric g-formula (Robins (1986)). In the present paper, we demonstrate that combining the g-formula with the additive hazards model and a sequential linear model for the mediator process results in simple and interpretable expressions for direct and indirect effects in terms of relative survival as well as cumulative hazards. Our results generalise and formalise the method of dynamic path analysis (Fosen et al. (2006), Strohmaier et al. (2015)). An application to data from a clinical trial on blood pressure medication is given.
Hidden monopole is a plausible dark matter candidate due to its stability, but its direct experimental search is extremely difficult due to feeble interactions with the standard model particles in the minimal form. Then, we introduce an axion, $a$, c onnecting the hidden monopole and the standard model particles and examine the current limits and future prospects of direct dark matter searches and beam-dump experiments. We find two parameter regions around $m_a = {cal O}(10)$ MeV, $f_a = {cal O}(10^{5})$ GeV and $m_a = {cal O}(100)$ MeV, $f_a = {cal O}(10^{4})$ GeV where monopole dark matter and the axion are respectively within the reach of the future experiments such as PICO-500 and SHiP. We also note that the hidden photons mainly produced by the axion decay contribute to dark radiation with $Delta N_{rm eff} simeq 0.6$ which can relax the $H_0$ tension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا