ترغب بنشر مسار تعليمي؟ اضغط هنا

A statistically-selected Chandra sample of 20 galaxy clusters -- I. Temperature and cooling time profiles

106   0   0.0 ( 0 )
 نشر من قبل Alastair Sanderson
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of 20 galaxy clusters observed with the Chandra X-ray satellite, focussing on the temperature structure of the intracluster medium and the cooling time of the gas. Our sample is drawn from a flux-limited catalogue but excludes the Fornax, Coma and Centaurus clusters, owing to their large angular size compared to the Chandra field-of-view. We describe a quantitative measure of the impact of central cooling, and find that the sample comprises 9 clusters possessing cool cores and 11 without. The properties of these two types differ markedly, but there is a high degree of uniformity amongst the cool core clusters, which obey a nearly universal radial scaling in temperature of the form T propto r^~0.4, within the core. This uniformity persists in the gas cooling time, which varies more strongly with radius in cool core clusters (t_cool propto r^~1.3), reaching t_cool <1Gyr in all cases, although surprisingly low central cooling times (<5Gyr) are found in many of the non-cool core systems. The scatter between the cooling time profiles of all the clusters is found to be remarkably small, implying a universal form for the cooling time of gas at a given physical radius in virialized systems, in agreement with recent previous work. Our results favour cluster merging as the primary factor in preventing the formation of cool cores.



قيم البحث

اقرأ أيضاً

We investigate the thermodynamic and chemical structure of the intracluster medium (ICM) across a statistical sample of 20 galaxy clusters analysed with the Chandra X-ray satellite. In particular, we focus on the scaling properties of the gas density , metallicity and entropy and the comparison between clusters with and without cool cores (CCs). We find marked differences between the two categories except for the gas metallicity, which declines strongly with radius for all clusters (Z ~ r^{-0.31}), outside ~0.02 r500. The scaling of gas entropy is non-self-similar and we find clear evidence of bimodality in the distribution of logarithmic slopes of the entropy profiles. With only one exception, the steeper sloped entropy profiles are found in CC clusters whereas the flatter slope population are all non-CC clusters. We explore the role of thermal conduction in stabilizing the ICM and conclude that this mechanism alone is sufficient to balance cooling in non-CC clusters. However, CC clusters appear to form a distinct population in which heating from feedback is required in addition to conduction. Under the assumption that non-CC clusters are thermally stabilized by conduction alone, we find the distribution of Spitzer conduction suppression factors, f_c, to be log-normal, with a log (base 10) mean of -1.50+/-0.03 (i.e. f_c=0.032) and log standard deviation 0.39+/-0.02.
We present Chandra gas temperature profiles at large radii for a sample of 13 nearby, relaxed galaxy clusters and groups, which includes A133, A262, A383, A478, A907, A1413, A1795, A1991, A2029, A2390, MKW4, RXJ1159+5531, and USGC S152. The sample co vers a range of average temperatures from 1 to 10 keV. The clusters are selected from the archive or observed by us to have sufficient exposures and off-center area coverage to enable accurate background subtraction and reach the temperature accuracy of better than 20-30% at least to r=0.4-0.5 r_180, and for the three best clusters, to 0.6-0.7 r_180. For all clusters, we find cool gas in the cores, outside of which the temperature reaches a peak at r =~ 0.15 r_180 and then declines to ~0.5 of its peak value at r =~ 0.5 r_180. When the profiles are scaled by the cluster average temperature (excluding cool cores) and the estimated virial radius, they show large scatter at small radii, but remarkable similarity at r>0.1-0.2 r_180 for all but one cluster (A2390). Our results are in good agreement with previous measurements from ASCA by Markevitch et al. and from Beppo-SAX by DeGrandi & Molendi. Four clusters have recent XMM-Newton temperature profiles, two of which agree with our results, and we discuss reasons for disagreement for the other two. The overall shape of temperature profiles at large radii is reproduced in recent cosmological simulations.
We present radial entropy profiles of the intracluster medium (ICM) for a collection of 239 clusters taken from the Chandra X-ray Observatorys Data Archive. Entropy is of great interest because it controls ICM global properties and records the therma l history of a cluster. Entropy is therefore a useful quantity for studying the effects of feedback on the cluster environment and investigating any breakdown of cluster self-similarity. We find that most ICM entropy profiles are well-fit by a model which is a power-law at large radii and approaches a constant value at small radii: K(r) = K0 + K100(r/100 kpc), where K0 quantifies the typical excess of core entropy above the best fitting power-law found at larger radii. We also show that the K0 distributions of both the full archival sample and the primary HIFLUGCS sample of Reiprich (2001) are bimodal with a distinct gap between K0 ~ 30 - 50 keV cm^2 and population peaks at K0 ~ 15 keV cm^2 and K0 ~ 150 keV cm^2. The effects of PSF smearing and angular resolution on best-fit K0 values are investigated using mock Chandra observations and degraded entropy profiles, respectively. We find that neither of these effects is sufficient to explain the entropy-profile flattening we measure at small radii. The influence of profile curvature and number of radial bins on best-fit K0 is also considered, and we find no indication K0 is significantly impacted by either. For completeness, we include previously unpublished optical spectroscopy of Halpha and [N II] emission lines discussed in Cavagnolo et al. (2008a). All data and results associated with this work are publicly available via the project web site.
89 - J. S. Sanders 2017
We analyse Chandra X-ray Observatory observations of a set of galaxy clusters selected by the South Pole Telescope using a new publicly-available forward-modelling projection code, MBProj2, assuming hydrostatic equilibrium. By fitting a powerlaw plus constant entropy model we find no evidence for a central entropy floor in the lowest-entropy systems. A model of the underlying central entropy distribution shows a narrow peak close to zero entropy which accounts for 60 per cent of the systems, and a second broader peak around 130 keV cm^2. We look for evolution over the 0.28 to 1.2 redshift range of the sample in density, pressure, entropy and cooling time at 0.015 R_500 and at 10 kpc radius. By modelling the evolution of the central quantities with a simple model, we find no evidence for a non-zero slope with redshift. In addition, a non-parametric sliding median shows no significant change. The fraction of cool-core clusters with central cooling times below 2 Gyr is consistent above and below z=0.6 (~30-40 per cent). Both by comparing the median thermodynamic profiles, centrally biased towards cool cores, in two redshift bins, and by modelling the evolution of the unbiased average profile as a function of redshift, we find no significant evolution beyond self-similar scaling in any of our examined quantities. Our average modelled radial density, entropy and cooling-time profiles appear as powerlaws with breaks around 0.2 R_500. The dispersion in these quantities rises inwards of this radius to around 0.4 dex, although some of this scatter can be fit by a bimodal model.
A study of the structural and scaling properties of the temperature distribution of the hot, X-ray emitting intra-cluster medium of galaxy clusters, and its dependence on dynamical state, can give insights into the physical processes governing the fo rmation and evolution of structure. We analyse the X-ray temperature profiles from XMM-Newton observations of 15 nearby (z < 0.2) clusters, drawn from a statistically representative sample. The clusters cover a temperature range from 2.5 keV to 8.5 keV, and present a variety of X-ray morphologies. We derive accurate projected temperature profiles to ~ 0.5 R_200, and compare structural properties (outer slope, presence of cooling core) with a quantitative measure of the X-ray morphology as expressed by power ratios. We also compare the results to recent cosmological numerical simulations. Once the temperature profiles are scaled by an average cluster temperature (excluding the central region) and the estimated virial radius, the profiles generally decline in the region 0.1 R_200 < R < 0.5 R_200. The central regions show the largest scatter, attributable mostly to the presence of cool core clusters. There is good agreement with numerical simulations outside the core regions. We find no obvious correlations between power ratio and outer profile slope. There may however be a weak trend with the existence of a cool core, in the sense that clusters with a central temperature decrement appear to be slightly more regular. The present results lend further evidence to indicate that clusters are a regular population, at least outside the core region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا