ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature profiles of a representative sample of nearby X-ray galaxy clusters

86   0   0.0 ( 0 )
 نشر من قبل Gabriel Pratt
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A study of the structural and scaling properties of the temperature distribution of the hot, X-ray emitting intra-cluster medium of galaxy clusters, and its dependence on dynamical state, can give insights into the physical processes governing the formation and evolution of structure. We analyse the X-ray temperature profiles from XMM-Newton observations of 15 nearby (z < 0.2) clusters, drawn from a statistically representative sample. The clusters cover a temperature range from 2.5 keV to 8.5 keV, and present a variety of X-ray morphologies. We derive accurate projected temperature profiles to ~ 0.5 R_200, and compare structural properties (outer slope, presence of cooling core) with a quantitative measure of the X-ray morphology as expressed by power ratios. We also compare the results to recent cosmological numerical simulations. Once the temperature profiles are scaled by an average cluster temperature (excluding the central region) and the estimated virial radius, the profiles generally decline in the region 0.1 R_200 < R < 0.5 R_200. The central regions show the largest scatter, attributable mostly to the presence of cool core clusters. There is good agreement with numerical simulations outside the core regions. We find no obvious correlations between power ratio and outer profile slope. There may however be a weak trend with the existence of a cool core, in the sense that clusters with a central temperature decrement appear to be slightly more regular. The present results lend further evidence to indicate that clusters are a regular population, at least outside the core region.

قيم البحث

اقرأ أيضاً

We present Chandra gas temperature profiles at large radii for a sample of 13 nearby, relaxed galaxy clusters and groups, which includes A133, A262, A383, A478, A907, A1413, A1795, A1991, A2029, A2390, MKW4, RXJ1159+5531, and USGC S152. The sample co vers a range of average temperatures from 1 to 10 keV. The clusters are selected from the archive or observed by us to have sufficient exposures and off-center area coverage to enable accurate background subtraction and reach the temperature accuracy of better than 20-30% at least to r=0.4-0.5 r_180, and for the three best clusters, to 0.6-0.7 r_180. For all clusters, we find cool gas in the cores, outside of which the temperature reaches a peak at r =~ 0.15 r_180 and then declines to ~0.5 of its peak value at r =~ 0.5 r_180. When the profiles are scaled by the cluster average temperature (excluding cool cores) and the estimated virial radius, they show large scatter at small radii, but remarkable similarity at r>0.1-0.2 r_180 for all but one cluster (A2390). Our results are in good agreement with previous measurements from ASCA by Markevitch et al. and from Beppo-SAX by DeGrandi & Molendi. Four clusters have recent XMM-Newton temperature profiles, two of which agree with our results, and we discuss reasons for disagreement for the other two. The overall shape of temperature profiles at large radii is reproduced in recent cosmological simulations.
116 - G.W. Pratt , M. Arnaud 2009
(Abridged) We examine the radial entropy distribution and its scaling using 31 nearby galaxy clusters from the Representative XMM-Newton Cluster Structure Survey (REXCESS). The entropy profiles are robustly measured at least out to R_1000 in all syst ems and out to R_500 in 13 systems. Compared to theoretical expectations, the observed distributions show a radial and mass-dependent excess entropy that is greater and extends to larger radii in lower mass systems. At R_500, the mass dependence and entropy excess are both negligible within the uncertainties. Mirroring this behaviour, the scaling of gas entropy is shallower than self-similar in the inner regions, but steepens with radius, becoming consistent with self-similar at R_500. The dispersion in scaled entropy in the inner regions is linked to the presence of cool cores and dynamical activity; at larger radii the dispersion decreases by a factor of two and the dichotomy between subsamples disappears. Parameterising the profiles with a power law plus constant model, there are two peaks in central entropy K_0; however, we cannot distinguish between a bimodal or a left-skewed distribution. The outer slopes are correlated with system temperature; their distribution is unimodal with a median value of 0.98. Renormalising the dimensionless entropy profiles by the gas mass fraction profile f_gas(< R), leads to a remarkable reduction in the scatter, implying that gas mass fraction variations with radius and mass are the cause of the observed entropy properties. We discuss a tentative scenario to explain the behaviour of the entropy and gas mass fraction in the REXCESS sample, in which extra heating and merger mixing maintains an elevated central entropy level in the majority of the population, and a smaller fraction of systems develops a cool core.
Galaxy clusters structure, dominated by dark matter, is traced by member galaxies in the optical and hot intra-cluster medium (ICM) in X-rays. We compare the radial distribution of these components and determine the mass-to-light ratio vs. system mas s relation. We use 14 clusters from the REXCESS sample which is representative of clusters detected in X-ray surveys. Photometric observations with the Wide Field Imager on the 2.2m MPG/ESO telescope are used to determine the number density profiles of the galaxy distribution out to $r_{200}$. These are compared to electron density profiles of the ICM obtained using XMM-Newton, and dark matter profiles inferred from scaling relations and an NFW model. While red sequence galaxies trace the total matter profile, the blue galaxy distribution is much shallower. We see a deficit of faint galaxies in the central regions of massive and regular clusters, and strong suppression of bright and faint blue galaxies in the centres of cool-core clusters, attributable to ram pressure stripping of gas from blue galaxies in high density regions of ICM and disruption of faint galaxies due to galaxy interactions. We find a mass-to-light ratio vs. mass relation within $r_{200}$ of $left(3.0pm0.4right) times 10^2, h,mathrm{M}_{odot},mathrm{L}_{odot}^{-1}$ at $10^{15},mathrm{M}_{odot}$ with slope $0.16 pm 0.14$, consistent with most previous results.
We report results from the analysis of 21 nearby galaxy clusters, 11 with cooling flow (CF) and 10 without cooling flow, observed with BeppoSAX. The temperature profiles of both CF and non-CF systems are characterized by an isothermal core extending out to 0.2 r_180; beyond this radius both CF and non-CF cluster profiles rapidly decline. Our results differ from those derived by other authors who either found continuously declining profiles or substantially flat profiles. Neither the CF nor the non-CF profiles can be modeled by a polytropic temperature profile, the reason being that the radius at which the profiles break is much larger than the core radius characterizing the gas density profiles. For r > 0.2 r_180, where the gas can be treated as a polytrope, the polytropic indices derived for CF and non-CF systems are respectively 1.20 +/- 0.06 and 1.46 +/- 0.06. The former index is closer to the isothermal value, 1, and the latter to the adiabatic value, 5/3. Published hydrodynamic simulations do not reproduce the peculiar shape of the observed temperature profile, probably suggesting that a fundamental ingredient is missing.
We review the methods adopted to reconstruct the mass profiles in X-ray luminous galaxy clusters. We discuss the limitations and the biases affecting these measurements and how these mass profiles can be used as cosmological proxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا