ترغب بنشر مسار تعليمي؟ اضغط هنا

The Virial Balance of Clumps and Cores in Molecular Clouds

144   0   0.0 ( 0 )
 نشر من قبل Sami Dib
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sami Dib




اسأل ChatGPT حول البحث

We study the instantaneous virial balance of clumps and cores (CCs) in 3D simulations of driven, MHD, isothermal molecular clouds (MCs). The models represent a range of magnetic field strengths in MCs from subcritical to non-magnetic regimes. We identify CCs at different density thresholds, and for each object, we calculate all the terms that enter the Eulerian form of the virial theorem (EVT). A CC is considered gravitationally bound when the gravitational term in the EVT is larger than the amount for the system to be virialized, which is more stringent than the condition that it be large enough to make the total volume energy negative. We also calculate, quantities commonly used in the observations to indicate the state of gravitational boundedness of CCs such as the Jeans number J_c, the mass-to magnetic flux ratio mu_c, and the virial parameter alpha_vir. Our results show that: a) CCs are dynamical out-of-equilibrium structures. b) The surface energies are of the same order than their volume counterparts c) CCs are either in the process of being compressed or dispersed by the velocity field. Yet, not all CCs that have a compressive net kinetic energy are gravitationally bound. d) There is no 1-to-1 correspondence between the state of gravitational boundedness of a CC as described by the virial analysis or as implied by the classical indicators. In general, in the virial analysis, we observe that only the inner regions of the objects are gravitationally bound, whereas J_c, alpha_vir, and mu_c estimates tend to show that they are more gravitationally bound at the lowest threshold levels and more magnetically supercritical. g) We observe, in the non-magnetic simulation, the existence of a bound core with structural and dynamical properties that resemble those of the Bok globule Barnard 68 (B68).



قيم البحث

اقرأ أيضاً

We discuss the connection between the chemistry of dense interstellar clouds and those characteristics of cometary matter that could be remnants of it. The chemical evolution observed to occur in molecular clouds is summarized and a model for dense c ore collapse that can plausibly account for the isotopic fractionation of hydrogen, nitrogen, oxygen and carbon measured in primitive solar system materials is presented.
326 - Xuefang Xu , Di Li , Y.Sophia Dai 2020
We have analyzed the rotational properties of 12 clumps using $^{13}$CO (1--0) and C$^{18}$O (1--0) maps of the Five College Radio Astronomy Observatory 13.7 m radio telescope. The clumps, located within molecular clouds, have radii ($R$) in the rang e of 0.06 -- 0.27,pc. The direction of clump elongation is not correlated with the direction of the velocity gradient. We measured the specific angular momentum (J/M) to be between 0.0022 and 0.025 pc,km,s$^{-1}$ based on $^{13}$CO images, and between 0.0025 and 0.021 pc,km,s$^{-1}$ based on C$^{18}$O images. The consistency of $J/M$ based on different tracers indicates the $^{13}$CO and C$^{18}$O in dense clumps trace essentially the same material despite significantly different opacities. We also found that $J/M$ increases monotonically as a function of $R$ in power--law form, $J/M~propto~R^{1.58~pm~0.11}$. The ratio between rotation energy and gravitational energy, $beta$, ranges from 0.0012 to 0.018. The small values of $beta$ imply that rotation alone is not sufficient to support the clump against gravitational collapse.
Under the assumptions that molecular clouds are nearly spatially and temporally isothermal and that the density peaks (``cores) within them are formed by turbulent fluctuations, we argue that cores cannot reach a hydrostatic (or magneto-static) state as a consequence of their formation process. In the non-magnetic case, stabilization requires a Bonnor-Ebert truncation at a finite radius, which is not feasible for a single-temperature flow, unless it amounts to a shock, which is clearly a dynamical feature. Instead, in this case, cores must be dynamical entities that can either be pushed into collapse, or else ``rebound towards the mean pressure and density as the parent cloud. Nevertheless, rebounding cores are delayed in their re-expansion by their own self-gravity. We give a crude estimate for the re-expansion time as a function of the closeness of the final compression state to the threshold of instability, finding typical values $sim 1$ Myr, i.e., of the order of a few free-fall times. Our results support the notion that not all cores observed in molecular clouds need to be on route to forming stars, but that instead a class of ``failed cores should exist, which must eventually re-expand and disperse, and which can be identified with observed starless cores. In the magnetic case, recent observational and theoretical work suggests that all cores are critical or supercritical, and are thus qualitatively equivalent to the non-magnetic case. Our results support the notion that the entire star formation process is dynamical, with no intermediate hydrostatic stages.
Whether or not molecular clouds and embedded cloud fragments are stable against collapse is of utmost importance for the study of the star formation process. Only supercritical cloud fragments are able to collapse and form stars. The virial parameter , alpha=M_vir/M, which compares the virial to the actual mass, provides one way to gauge stability against collapse. Supercritical cloud fragments are characterized by alpha<2, as indicated by a comprehensive stability analysis considering perturbations in pressure and density gradients. Past research has suggested that virial parameters alpha>2 prevail in clouds. This would suggest that collapse towards star formation is a gradual and relatively slow process, and that magnetic fields are not needed to explain the observed cloud structure. Here, we review a range of very recent observational studies that derive virial parameters <<2 and compile a catalogue of 1325 virial parameter estimates. Low values of alpha are in particular observed for regions of high mass star formation (HMSF). These observations may argue for a more rapid and violent evolution during collapse. This would enable competitive accretion in HMSF, constrain some models of monolithic collapse, and might explain the absence of high--mass starless cores. Alternatively, the data could point at the presence of significant magnetic fields ~1 mG at high gas densities. We examine to what extent the derived observational properties might be biased by observational or theoretical uncertainties. For a wide range of reasonable parameters, our conclusions appear to be robust with respect to such biases.
140 - L.E.Pirogov , I.I.Zinchenko 2009
We have analyzed HCN(1-0) and CS(2-1) line profiles obtained with high signal-to-noise ratios toward distinct positions in three selected objects in order to search for small-scale structure in molecular cloud cores associated with regions of high-ma ss star formation. In some cases, ripples were detected in the line profiles, which could be due to the presence of a large number of unresolved small clumps in the telescope beam. The number of clumps for regions with linear scales of ~0.2-0.5 pc is determined using an analytical model and detailed calculations for a clumpy cloud model; this number varies in the range: ~2 10^4-3 10^5, depending on the source. The clump densities range from ~3 10^5-10^6 cm^{-3}, and the sizes and volume filling factors of the clumps are ~(1-3) 10^{-3} pc and ~0.03-0.12. The clumps are surrounded by inter-clump gas with densities not lower than ~(2-7) 10^4 cm^{-3}. The internal thermal energy of the gas in the model clumps is much higher than their gravitational energy. Their mean lifetimes can depend on the inter-clump collisional rates, and vary in the range ~10^4-10^5 yr. These structures are probably connected with density fluctuations due to turbulence in high-mass star-forming regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا