ترغب بنشر مسار تعليمي؟ اضغط هنا

Clouds, Clumps, Cores & Comets - a Cosmic Chemical Connection?

73   0   0.0 ( 0 )
 نشر من قبل Steve Rodgers
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the connection between the chemistry of dense interstellar clouds and those characteristics of cometary matter that could be remnants of it. The chemical evolution observed to occur in molecular clouds is summarized and a model for dense core collapse that can plausibly account for the isotopic fractionation of hydrogen, nitrogen, oxygen and carbon measured in primitive solar system materials is presented.

قيم البحث

اقرأ أيضاً

143 - Sami Dib 2006
We study the instantaneous virial balance of clumps and cores (CCs) in 3D simulations of driven, MHD, isothermal molecular clouds (MCs). The models represent a range of magnetic field strengths in MCs from subcritical to non-magnetic regimes. We iden tify CCs at different density thresholds, and for each object, we calculate all the terms that enter the Eulerian form of the virial theorem (EVT). A CC is considered gravitationally bound when the gravitational term in the EVT is larger than the amount for the system to be virialized, which is more stringent than the condition that it be large enough to make the total volume energy negative. We also calculate, quantities commonly used in the observations to indicate the state of gravitational boundedness of CCs such as the Jeans number J_c, the mass-to magnetic flux ratio mu_c, and the virial parameter alpha_vir. Our results show that: a) CCs are dynamical out-of-equilibrium structures. b) The surface energies are of the same order than their volume counterparts c) CCs are either in the process of being compressed or dispersed by the velocity field. Yet, not all CCs that have a compressive net kinetic energy are gravitationally bound. d) There is no 1-to-1 correspondence between the state of gravitational boundedness of a CC as described by the virial analysis or as implied by the classical indicators. In general, in the virial analysis, we observe that only the inner regions of the objects are gravitationally bound, whereas J_c, alpha_vir, and mu_c estimates tend to show that they are more gravitationally bound at the lowest threshold levels and more magnetically supercritical. g) We observe, in the non-magnetic simulation, the existence of a bound core with structural and dynamical properties that resemble those of the Bok globule Barnard 68 (B68).
Various aspects of the connection between cloud cover (CC) and cosmic rays (CR) are analysed. We argue that the anticorrelation between the temporal behaviour of low (LCC) and middle (MCC) clouds evidences against causal connection between them and C R. Nevertheless, if a part of low clouds (LCC) is connected and varies with CR, then its most likely value averaged over the Globe should not exceed 20% at the two standard deviation level.
A fundamental question in cometary science is whether the different dynamical classes of comets have different chemical compositions, which would reflect different initial conditions. From the ground or Earth orbit, radio and infrared spectroscopic o bservations of a now significant sample of comets indeed reveal deep differences in the relative abundances of cometary ices. However, no obvious correlation with dynamical classes is found. Further results come, or are expected, from space exploration. Such investigations, by nature limited to a small number of objects, are unfortunately focussed on short-period comets (mainly Jupiter-family). But these in situ studies provide ground truth for remote sensing. We discuss the chemical differences in comets from our database of spectroscopic radio observations, which has been recently enriched by several Jupiter-family and Halley-type comets.
118 - V. Wakelam , P. Gratier , M. Ruaud 2021
Aims: Interstellar molecules form early in the evolutionary sequence of interstellar material that eventually forms stars and planets. To understand this evolutionary sequence, it is important to characterize the chemical composition of its first ste ps. Methods: In this paper, we present the result of a 2 and 3 mm survey of five cold clumps identified by the Planck mission. We carried out a radiative transfer analysis on the detected lines in order to put some constraints on the physical conditions within the cores and on the molecular column densities. We also performed chemical models to reproduce the observed abundances in each source using the gas-grain model Nautilus. Results: Twelve molecules were detected: H2CO, CS, SO, NO, HNO, HCO+, HCN, HNC, CN, CCH, CH3OH, and CO. Here, CCH is the only carbon chain we detected in two sources. Radiative transfer analyses of HCN, SO, CS, and CO were performed to constrain the physical conditions of each cloud with limited success. The sources have a density larger than $10^4$ cm$^{-3}$ and a temperature lower than 15 K. The derived species column densities are not very sensitive to the uncertainties in the physical conditions, within a factor of 2. The different sources seem to present significant chemical differences with species abundances spreading over one order of magnitude. The chemical composition of these clumps is poorer than the one of Taurus Molecular Cloud 1 Cyanopolyyne Peak (TMC-1 CP) cold core. Our chemical model reproduces the observational abundances and upper limits for 79 to 83% of the species in our sources. The best times for our sources seem to be smaller than those of TMC-1, indicating that our sources may be less evolved and explaining the smaller abundances and the numerous non-detections. Also, CS and HCN are always overestimated by our models.
Massive stars have a strong impact on their local environments. However, how stellar feedback regulates star formation is still under debate. In this context, we studied the chemical properties of 80 dense cores in the Orion molecular cloud complex c omposed of the Orion A (39 cores), B (26 cores), and lambda Orionis (15 cores) clouds using multiple molecular line data taken with the Korean Very Long Baseline Interferometry Network (KVN) 21-m telescopes. The lambda Orionis cloud has an H ii bubble surrounding the O-type star lambda Ori, and hence it is exposed to the ultraviolet (UV) radiation field of the massive star. The abundances of C2H and HCN, which are sensitive to UV radiation, appear to be higher in the cores in the lambda Orionis cloud than those in the Orion A and B clouds, while the HDCO to H2CO abundance ratios show an opposite trend, indicating a warmer condition in the lambda Orionis cloud. The detection rates of dense gas tracers such as the N2H+, HCO+, and H13CO+ lines are also lower in the lambda Orionis cloud. These chemical properties imply that the cores in the lambda Orionis cloud are heated by UV photons from lambda Ori. Furthermore, the cores in the lambda Orionis cloud do not show any statistically significant excess in the infall signature of HCO+ (1 - 0), unlike the Orion A and B clouds. Our results support the idea that feedback from massive stars impacts star formation in a negative way by heating and evaporating dense materials, as in the lambda Orionis cloud.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا