ﻻ يوجد ملخص باللغة العربية
We report on non-LTE Ne abundances for a sample of B-type stellar members of the Orion Association. The abundances were derived by means of non-LTE fully metal-blanketed model atmospheres and extensive model atoms with updated atomic data. We find that these young stars have a very homogeneous abundance of A(Ne) = 8.27 +/- 0.05. This abundance is higher by ~0.4 dex than currently adopted solar value, A(Ne)=7.84, which is derived from lines produced in the corona and active regions. The general agreement between the abundances of C, N, and O derived for B stars with the solar abundances of these elements derived from 3-D hydrodynamical models atmospheres strongly suggests that the abundance patterns of the light elements in the Sun and B stars are broadly similar. If this hypothesis is true, then the Ne abundance derived here is the same within the uncertainties as the value required to reconcile solar models with helioseismological observations.
Sulfur abundances are derived for a sample of ten B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis
We present non-LTE oxygen abundances for a sample of B stars in the Orion association. The abundance calculations included non-LTE line formation and used fully blanketed non-LTE model atmospheres. The stellar parameters were the same as adopted in t
The recent downward revision of the solar photospheric abundances now leads to severe inconsistencies between the theoretical predictions for the internal structure of the Sun and the results of helioseismology. There have been claims that the solar
To revisit the long-standing problem of possible inconsistency concerning the oxygen composition in the current galactic gas and in the solar atmosphere (i.e., the former being appreciably lower by ~0.3 dex) apparently contradicting the galactic chem
Following the Chandra Orion Ultradeep Project (COUP) observation, we have studied the chemical composition of the hot plasma in a sample of 146 X-ray bright pre-main sequence stars in the Orion Nebula Cluster. We report measurements of individual ele