ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical Homogeneity in the Orion Association: Oxygen Abundances of B Stars

151   0   0.0 ( 0 )
 نشر من قبل Katia Cunha
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present non-LTE oxygen abundances for a sample of B stars in the Orion association. The abundance calculations included non-LTE line formation and used fully blanketed non-LTE model atmospheres. The stellar parameters were the same as adopted in the previous study by Cunha & Lambert (1994). We find that the young Orion stars in this sample of 10 stars are described by a single oxygen abundance with an average value of A(O)=8.78 and a small dispersion of +/- 0.05 dex, which is of the order of the uncertainties in the analysis. This average oxygen abundance compares well with the average oxygen abundance obtained previously in Cunha & Lambert (1994): A(O) = 8.72 +/- 0.13 although this earlier study, based upon non-blanketed model atmospheres in LTE, displayed larger scatter. Small scatter of chemical abundances in Orion B stars had also been found in our previous studies for neon and argon; all based on the same effective temperature scale. The derived oxygen abundance distribution for the Orion association compares well with other results for the oxygen abundance in the solar neighborhood.



قيم البحث

اقرأ أيضاً

168 - Simone Daflon 2009
Sulfur abundances are derived for a sample of ten B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis analysis of lines from two ionization states of sulfur, SII and SIII. The observations are high-resolution spectra obtained with the ARCES spectrograph at the Apache Point Observatory. The abundance distribution obtained for the Orion targets is homogeneous within the expected errors in the analysis: A(S)=7.15+/-0.05. This average abundance result is in agreement with the recommended solar value (both from modelling of the photospheres in 1-D and 3-D, and meteorites) and indicates that little, if any, chemical evolution of sulfur has taken place in the last ~4.5 billion years. The sulfur abundances of the young stars in Orion are found to agree well with results for the Orion nebulae, and place strong constraints on the amount of sulfur depletion onto grains as being very modest or nonexistent. The sulfur abundances for Orion are consistent with other measurements at a similar galactocentric radius: combined with previous results for other OB-type stars produce a relatively shallow sulfur abundance gradient with a slope of -0.037+/-0.012 dex/kpc.
Due to its proximity, the Orion star forming region is often used as a proxy to study processes related to star formation and to observe young stars in the environment they were born in. With the release of Gaia DR2, the distance measurements to the Orion complex are now good enough that the three dimensional structure of the complex can be explored. Here we test the hypothesis that, due to non-trivial structure and dynamics, and age spread in the Orion complex, the chemical enrichment of youngest stars by early core-collapse supernovae can be observed. We obtained spectra of 794 stars of the Orion complex with the HERMES spectrograph at the Anglo Australian telescope as a part of the GALAH and GALAH-related surveys. We use the spectra of $sim300$ stars to derive precise atmospheric parameters and chemical abundances of 25 elements for 15 stellar clusters in the Orion complex. We demonstrate that the Orion complex is chemically homogeneous and that there was no self-pollution of young clusters by core-collapse supernovae from older clusters; with a precision of 0.02 dex in relative alpha-elements abundance and 0.06 dex in oxygen abundance we would have been able to detect pollution from a single supernova, given a fortunate location of the SN and favourable conditions for ISM mixing. We estimate that the supernova rate in the Orion complex was very low, possibly producing no supernova by the time the youngest stars of the observed population formed (from around 21 to 8 Myr ago).
We report on non-LTE Ne abundances for a sample of B-type stellar members of the Orion Association. The abundances were derived by means of non-LTE fully metal-blanketed model atmospheres and extensive model atoms with updated atomic data. We find th at these young stars have a very homogeneous abundance of A(Ne) = 8.27 +/- 0.05. This abundance is higher by ~0.4 dex than currently adopted solar value, A(Ne)=7.84, which is derived from lines produced in the corona and active regions. The general agreement between the abundances of C, N, and O derived for B stars with the solar abundances of these elements derived from 3-D hydrodynamical models atmospheres strongly suggests that the abundance patterns of the light elements in the Sun and B stars are broadly similar. If this hypothesis is true, then the Ne abundance derived here is the same within the uncertainties as the value required to reconcile solar models with helioseismological observations.
To revisit the long-standing problem of possible inconsistency concerning the oxygen composition in the current galactic gas and in the solar atmosphere (i.e., the former being appreciably lower by ~0.3 dex) apparently contradicting the galactic chem ical evolution, we carried out oxygen abundance determinations for 64 mid- through late-B stars by using the O I 6156-8 lines while taking into account the non-LTE effect, and compared them with the solar O abundance established in the same manner. The resulting mean oxygen abundance was <A(O)> = 8.71 (+/- 0.06), which means that [O/H] (star-Sun differential abundance) is ~-0.1, the difference being less significant than previously thought. Moreover, since the 3D correction may further reduce the reference solar oxygen abundance (8.81) by ~0.1 dex, we conclude that the photospheric O abundances of these B stars are almost the same as that of the Sun. We also determined the non-LTE abundances of neon for the sample B stars from Ne I 6143/6163 lines to be <A(Ne)> = 8.02 (+/- 0.09), leading to the Ne-to-O ratio of ~0.2 consistent with the recent studies. This excludes a possibility of considerably high Ne/O ratio once proposed as a solution to the confronted solar model problem.
Early B-type stars are invaluable indicators for elemental abundances of their birth environments. In contrast to the surrounding neutral interstellar matter (ISM) and HII regions their chemical composition is unaffected by depletion onto dust grains and by the derivation of different abundances from recombination and collisional lines. In combination with ISM or nebular gas-phase abundances they facilitate the dust-phase composition to be constrained. Precise abundances of C, N, Mg, Ne, Fe in early B-type stars in the Orion star-forming region are determined in order to: a) review previous determinations using a self-consistent quantitative spectral analysis based on modern stellar atmospheres and recently updated model atoms, b) complement results found in Paper I for oxygen and silicon, c) establish an accurate and reliable set of stellar metal abundances to constrain the dust-phase composition of the Orion HII region in Paper II of the series. A detailed, self-consistent spectroscopic study of a sample of 13 narrow-lined B0V-B2V stars in Ori OB1 is performed. High-quality spectra obtained with FIES@NOT are analysed using a non-LTE method and line-profile fitting techniques, validating the approach by comparison with results obtained in Paper I using line-blanketed non-LTE model atmospheres and a curve-of-growth analysis. The two independent analysis strategies give consistent results for basic stellar parameters and abundances of oxygen and silicon. The extended analysis to C, N, Mg, Ne, and Fe finds a high degree of chemical homogeneity, with the 1sigma-scatter adopting values of 0.03--0.07 dex around the mean for the various elements. Present-day abundances from B-type stars in Ori OB1 are compatible at similar precision with cosmic abundance standard values as recently established from early-type stars in the solar neighbourhood and also with the Sun. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا