ﻻ يوجد ملخص باللغة العربية
We derive the constraints on the mass ratio for a binary system to merge in a violent process. We find that the secondary to primary stellar mass ratio should be ~0.003 < (M_2/M_1) < ~0.15. A more massive secondary star will keep the primary stellar envelope in synchronized rotation with the orbital motion until merger occurs. This implies a very small relative velocity between the secondary star and the primary stellar envelope at the moment of merger, and therefore very weak shock waves, and low flash luminosity. A too low mass secondary will release small amount of energy, and will expel small amount of mass, which is unable to form an inflated envelope. It can however produce a quite luminous but short flash when colliding with a low mass main sequence star. Violent and luminous mergers, which we term mergebursts, can be observed as V838 Monocerotis type events, where a star undergoes a fast brightening lasting days to months, with a peak luminosity of up to ~10^6 Lo followed by a slow decline at very low effective temperatures.
We use cosmological SPH simulations to investigate the effects of mergers and interactions on the formation of the bulge and disc components of galactic systems. We find that secular evolution during mergers seems to be a key process in the formation
This paper explores how orbits in a galactic potential can be impacted by large amplitude time-dependences of the form that one might associate with galaxy or halo formation or strong encounters between pairs of galaxies. A period of time-dependence
In the study of ocean wave impact on structures, one often uses Froude scaling since the dominant force is gravity. However the presence of trapped or entrained air in the water can significantly modify wave impacts. When air is entrained in water in
We report the results of optical follow-up observations of 29 gravitational-wave triggers during the first half of the LIGO-Virgo Collaboration (LVC) O3 run with the Gravitational-wave Optical Transient Observer (GOTO) in its prototype 4-telescope co
We present Atacama Large Millimeter/submillimeter Array observations of a massive (M_stars~10^11 M_Sun) compact (r_e,UV~100 pc) merger remnant at z=0.66 that is driving a 1000 km/s outflow of cool gas, with no observational trace of an active galacti