ﻻ يوجد ملخص باللغة العربية
We use cosmological SPH simulations to investigate the effects of mergers and interactions on the formation of the bulge and disc components of galactic systems. We find that secular evolution during mergers seems to be a key process in the formation of stable disc-bulge systems with observational counterparts and contributes to establish the fundamental relations observed in galaxies. Our findings suggest that the secular evolution phase couples the formation mechanisms of the bulge and disc components. According to our results, depending on the particular stability properties and merger parameters, violents events could drive a morphological loop in which the outcome could be a disc or a spheroid.
We derive the constraints on the mass ratio for a binary system to merge in a violent process. We find that the secondary to primary stellar mass ratio should be ~0.003 < (M_2/M_1) < ~0.15. A more massive secondary star will keep the primary stellar
Mixing and fallback models in faint supernova models are supposed to reproduce the abundance patterns of observed carbon-enhanced metal-poor (CEMP) stars in the Galactic halo. A fine tuning of the model parameters for individual stars is required to
We discuss the statistical foundations of morphological star-galaxy separation. We show that many of the star-galaxy separation metrics in common use today (e.g. by SDSS or SExtractor) are closely related both to each other, and to the model odds rat
It is widely assumed that the most probable sites of flare occurrences are the locations of high horizontal magnetic field gradients in the active regions. Instead of magnetograms the present work checks this assumption by using sunspot data, the tar
RW Aur is a young binary system showing strong signatures of a recent tidal encounter between the circumprimary disk and the secondary star. The primary star has recently undergone two major dimming events ($Delta$mag $approx$ 2 in V-band), whose ori