ﻻ يوجد ملخص باللغة العربية
With close pairs of quasars at different redshifts, a background quasar sightline can be used to study a foreground quasars environment in absorption. We used a sample of 17 Lyman limit systems with column density N_HI > 10^19 cm^-2 selected from 149 projected quasar pair sightlines, to investigate the clustering pattern of optically thick absorbers around luminous quasars at z ~ 2.5. Specifically, we measured the quasar-absorber correlation function in the transverse direction, and found a comoving correlation length of r_0=9.2_{+1.5}_{-1.7} Mpc/h (comoving) assuming a power law correlation function, with gamma=1.6. Applying this transverse clustering strength to the line-of-sight, would predict that ~ 15-50% of all quasars should show a N_HI > 10^19 cm^-2 absorber within a velocity window of v < 3000 km/s. This overpredicts the number of absorbers along the line-of-sight by a large factor, providing compelling evidence that the clustering pattern of optically thick absorbers around quasars is highly anisotropic. The most plausible explanationfor the anisotropy is that the transverse direction is less likely to be illuminated by ionizing photons than the line-of-sight, and that absorbers along the line-of-sight are being photoevaporated. A simple model for the photoevaporation of absorbers subject to the ionizing flux of a quasar is presented, and it is shown that absorbers with volume densities n_H < 0.1 cm^-3 will be photoevaporated if they lie within ~ 1 Mpc (proper) of a luminous quasar. Using this simple model, we illustrate how comparisons of the transverse and line-of-sight clustering around quasars can ultimately be used to constrain the distribution of gas in optically thick absorption line systems.
With close pairs of quasars at different redshifts, a background quasar sightline can be used to study a foreground quasars environment in absorption. We search 149 moderate resolution background quasar spectra, from Gemini, Keck, the MMT, and the SD
The rare close projection of two quasars on the sky provides the opportunity to study the host galaxy environment of a foreground quasar in absorption against the continuum emission of a background quasar. For over a decade the Quasars probing quasar
With close pairs of quasars at different redshifts, a background quasar sightline can be used to study a foreground quasars environment in absorption. We use a sample of 650 projected quasar pairs to study the HI Lya absorption transverse to luminous
The radio-loud/radio-quiet (RL/RQ) dichotomy in quasars is still an open question. Although it is thought that accretion onto supermassive black holes in the centre the host galaxies of quasars is responsible for some radio continuum emission, there
We compute the cross-correlation between a sample of 14,000 radio-loud AGN (RLAGN) with redshifts between 0.4 and 0.8 selected from the Sloan Digital Sky Survey and a reference sample of 1.2 million luminous red galaxies in the same redshift range. W