ﻻ يوجد ملخص باللغة العربية
We have carried out a high spectral resolution line survey towards the Orion Kleinmann-Low (KL) cluster from 44-188 um. The observations were taken with the Long Wavelength Spectrometer (LWS) in Fabry-Perot mode, on board the Infrared Space Observatory (ISO). A total of 152 lines are clearly detected and a further 34 features are present as possible detections. The spectrum is dominated by the molecular species H2O, OH and CO, along with [OI] and [CII] lines from PDR or shocked gas and [OIII], [NIII] lines from the foreground M42 HII region. Several isotopic species, as well as NH3, are also detected. HDO and H3O+ are tentatively detected for the first time in the far-infrared range towards Orion-KL. A basic analysis of the line observations is carried out, by comparing with previous measurements and published models and deriving rotational temperatures and column densities in the case of the molecular species. The complexity of the region requires more sophisticated models for the interpretation of all the line observations.
We present observations towards one of the closest regions of high mass star formation, Orion BN/KL, performed at both low resolution mode (grating mode) and high resolution mode (Fabry-Perot) with the Long Wavelength Spectrometer on board the Infrar
Orion KL has served as a benchmark for spectral line searches throughout the (sub)millimeter regime. The main goal is to systematically study spectral characteristics of Orion KL in the 1.3 cm band. We carried out a spectral line survey (17.9 GHz to
We present a 67--93.6 GHz spectral line survey of Orion-KL with the new 4 mm Receiver on the Green Bank Telescope (GBT). The survey reaches unprecedented depths and covers the low-frequency end of the 3 mm atmospheric window which has been relatively
Orion-KL is a well known high mass star forming region that has long been the target of spectral line surveys and searches for complex molecules. One spectral window where the region had never been surveyed is around wavelengths of $lambda$=1 cm. Thi
The degree to which the properties of protostars are affected by environment remains an open question. To investigate this, we look at the Orion A and B molecular clouds, home to most of the protostars within 500 pc. At ~400 pc, Orion is close enough