ﻻ يوجد ملخص باللغة العربية
The degree to which the properties of protostars are affected by environment remains an open question. To investigate this, we look at the Orion A and B molecular clouds, home to most of the protostars within 500 pc. At ~400 pc, Orion is close enough to distinguish individual protostars across a range of environments in terms of both the stellar and gas projected densities. As part of the Herschel Orion Protostar Survey (HOPS), we used the Photodetector Array Camera and Spectrometer (PACS) to map 108 partially overlapping square fields with edge lengths of 5 arcmin or 8 arcmin and measure the 70 micron and 160 micron flux densities of 338 protostars within them. In this paper we examine how these flux densities and their ratio depend on evolutionary state and environment within the Orion complex. We show that Class 0 protostars occupy a region of the 70 micron flux density versus 160 micron to 70 micron flux density ratio diagram that is distinct from their more evolved counterparts. We then present evidence that the Integral-Shaped Filament (ISF) and Orion B contain protostars with more massive envelopes than those in the more sparsely populated LDN 1641 region. This can be interpreted as evidence for increasing star formation rates in the ISF and Orion B or as a tendency for more massive envelopes to be inherited from denser birth environments. We also provide technical details about the map-making and photometric procedures used in the HOPS program.
The Herschel Orion Protostar Survey obtained well-sampled 1.2 - 870 micron spectral energy distributions (SEDs) of over 300 protostars in the Orion molecular clouds, home to most of the young stellar objects (YSOs) in the nearest 500 pc. We plot the
We present key results from the Herschel Orion Protostar Survey (HOPS): spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostar
Orion A hosts the nearest massive star factory, thus offering a unique opportunity to resolve the processes connected with the formation of both low- and high-mass stars. Here we present the most detailed and sensitive near-infrared (NIR) observation
Surveys with the Spitzer and Herschel space observatories are now enabling the discovery and characterization of large samples of protostars in nearby molecular clouds, providing the observational basis for a detailed understanding of star formation
We present CARMA CO (J=1-0) observations and Herschel PACS spectroscopy, characterizing the outflow properties toward extremely young and deeply embedded protostars in the Orion molecular clouds. The sample comprises a subset of the Orion protostars