ﻻ يوجد ملخص باللغة العربية
We perform numerical simulations of a disc-planet system using various grid-based and smoothed particle hydrodynamics (SPH) codes. The tests are run for a simple setup where Jupiter and Neptune mass planets on a circular orbit open a gap in a protoplanetary disc during a few hundred orbital periods. We compare the surface density contours, potential vorticity and smoothed radial profiles at several times. The disc mass and gravitational torque time evolution are analyzed with high temporal resolution. There is overall consistency between the codes. The density profiles agree within about 5% for the Eulerian simulations while the SPH results predict the correct shape of the gap although have less resolution in the low density regions and weaker planetary wakes. The disc masses after 200 orbital periods agree within 10%. The spread is larger in the tidal torques acting on the planet which agree within a factor 2 at the end of the simulation. In the Neptune case the dispersion in the torques is greater than for Jupiter, possibly owing to the contribution from the not completely cleared region close to the planet.
We present a global MHD simulation of a turbulent accretion disc interacting with a protoplanet of 5 Jupiter masses. The disc model had H/r=0.1,and a value of the Shakura & Sunyaev alpha ~ 0.005. The protoplanet opened a gap in the disc, with the int
During the process of planet formation, the planet-discs interactions might excite (or damp) the orbital eccentricity of the planet. In this paper, we present two long ($tsim 3times 10^5$ orbits) numerical simulations: (a) one (with a relatively ligh
Protoplanets may be born into dust-rich environments if planetesimals formed through streaming or gravitational instabilities, or if the protoplanetary disc is undergoing mass loss due to disc winds or photoevaporation. Motivated by this possibility,
In this article we present results from three on-going projects related to the formation of protoplanets in protostellar discs. We present the results of simulations that model the interaction between embedded protoplanets and disc models undergoing
A new technique to detect protoplanets is by observing the kinematics of the surrounding gas. Gravitational perturbations from a planet produce peculiar `kinks in channel maps of different gas species. In this paper, we show that such kinks can be re