ﻻ يوجد ملخص باللغة العربية
Protoplanets may be born into dust-rich environments if planetesimals formed through streaming or gravitational instabilities, or if the protoplanetary disc is undergoing mass loss due to disc winds or photoevaporation. Motivated by this possibility, we explore the interaction between low mass planets and dusty protoplanetary discs with focus on disc-planet torques. We implement Lin & Youdins newly developed, purely hydrodynamic model of dusty gas into the PLUTO code to simulate dusty protoplanetary discs with an embedded planet. We find that for imperfectly coupled dust and high metallicity, e.g. Stokes number $10^{-3}$ and dust-to-gas ratio $Sigma_mathrm{d}/Sigma_mathrm{g}=0.5$ , a `bubble develops inside the planets co-orbital region, which introduces unsteadiness in the flow. The resulting disc-planet torques sustain large amplitude oscillations that persists well beyond that in simulations with perfectly coupled dust or low dust-loading, where co-rotation torques are always damped. We show that the desaturation of the co-rotation torques by finite-sized particles is related to potential vorticity generation from the misalignment of dust and gas densities. We briefly discuss possible implications for the orbital evolution of protoplanets in dust-rich discs. We also demonstrate Lin & Youdins dust-free framework reproduces previous results pertaining to dusty protoplanetary discs, including dust-trapping by pressure bumps, dust settling, and the streaming instability.
The gravitational interaction between a protoplanetary disc and planetary sized bodies that form within it leads to the exchange of angular momentum, resulting in migration of the planets and possible gap formation in the disc for more massive planet
During the process of planet formation, the planet-discs interactions might excite (or damp) the orbital eccentricity of the planet. In this paper, we present two long ($tsim 3times 10^5$ orbits) numerical simulations: (a) one (with a relatively ligh
We present a global MHD simulation of a turbulent accretion disc interacting with a protoplanet of 5 Jupiter masses. The disc model had H/r=0.1,and a value of the Shakura & Sunyaev alpha ~ 0.005. The protoplanet opened a gap in the disc, with the int
94 Ceti is a triple star system with a circumprimary gas giant planet and far-infrared excess. Such excesses around main sequence stars are likely due to debris discs, and are considered as signposts of planetary systems and, therefore, provide impor
According to the sequential accretion model, giant planet formation is based first on the formation of a solid core which, when massive enough, can gravitationally bind gas from the nebula to form the envelope. In order to trigger the accretion of ga