ترغب بنشر مسار تعليمي؟ اضغط هنا

GRB 990413: Insight into the thermal phase evolution

59   0   0.0 ( 0 )
 نشر من قبل Giancarlo Ghirlanda
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Z. Bosnjak




اسأل ChatGPT حول البحث

GRB 990413 shows a very hard spectrum (with a low energy spectral component F(E) propto E^{2.49}) which is well represented by a black body model with characteristic temperature ~70 keV. It thus belongs to the subset of GRBs which might be revealing a thermal phase. We find that the temperature/luminosity evolution is consistent with that found in the other ``thermal GRBs. The time resolved spectral analysis indicates the presence of a second non--thermal component contributing (for about 1 s) up to 30 per cent of the total flux. Differently from the other thermal GRBs, GRB 990413 shows significantly high level of variability and the evolution of the thermal/non--thermal spectral components is strongly correlated with the flux variations. This GRB thus offers the unique opportunity to test the standard fireball photospheric and internal shock phases and their reciprocal influence. GRB 990413 was not selected on the basis of its spectrum and thus hints to the possibility that this early behavior might be more common than currently known.



قيم البحث

اقرأ أيضاً

We present and perform a detailed analysis of multi-wavelength observations of thisgrb, an optical bright GRB with an observed reverse shock (RS) signature. Observations of this GRB were acquired with the BOOTES-4 robotic telescope, the fermi, and th e swift missions. Time-resolved spectroscopy of the prompt emission shows that changes to the peak energy (Ep) tracks intensity and the low-energy spectral index seems to follow the intensity for the first episode, whereas this tracking behavior is less clear during the second episode. The fit to the afterglow light curves shows that the early optical afterglow can be described with RS emission and is consistent with the thin shell scenario of the constant ambient medium. The late time afterglow decay is also consistent with the prediction of the external forward shock (FS) model. We determine the properties of the shocks, Lorentz factor, magnetization parameters, and ambient density of thisgrb, and compare these parameters with another 12 GRBs, consistent with having RS produced by thin shells in an ISM-like medium. The value of the magnetization parameter ($R_{rm B} approx 18$) indicates a moderately magnetized baryonic dominant jet composition for thisgrb. We also report the host galaxy photometric observations of thisgrb obtained with 10.4m GTC, 3.5m CAHA, and 3.6m DOT telescopes and find the host (photo $z$ = $2.8^{+0.7}_{-0.9}$) to be a high mass, star-forming galaxy with a star formation rate of $20 pm 10 msun$ $rm yr^{-1}$.
96 - D. Bettoni 2012
The NGC 1023 group is one of the most studied nearby groups. We want to give an insight into the evolution of its innermost region by means of ultraviolet observations and proper models. We used the FUV and NUV GALEX archival data as well as a large set of SPH simulations with chemo-photometric implementation. From the UV observations we found that several, already known, dwarf galaxies very close to NGC 1023 are also detected in UV and two more objects (with no optical counterpart) can be added to the group. Using these data we construct exhaustive models to account for their formation. We find that the whole SED of NGC 1023 and its global properties are well matched by a simulation which provides a minor merger with a companion system 5 times less massive. The strong interaction phase started 7.7 Gyr ago and the final merger 1.8 Gyr ago.
110 - Michele Trenti 2014
Long-Duration Gamma-Ray Bursts (GRBs) are powerful probes of the Universe star formation history, but correlation between the two depends on the highly debated presence/strength of a metallicity bias. To investigate this correlation, we use a phenome nological model that successfully describes star formation rates, luminosities and stellar masses of star forming galaxies, applying it to GRB production. We predict luminosities, stellar masses, and metallicities of host galaxies depending on the metallicity bias. Our best-fitting model includes a moderate metallicity bias, broadly consistent with the large majority of long-duration GRBs in metal-poor environments originating from collapsars (probability ~83%), but with a secondary contribution (~17%) from metal-independent production channels, such as binary evolution. Because of the mass-metallicity relation of galaxies, the maximum likelihood model predicts that the metal-independent channel becomes dominant at z<2, where hosts have higher metallicities and collapsars are suppressed. This possibly explains why some studies find no clear evidence of a metal-bias based on low-z samples. However, while metallicity predictions match observations well at high redshift, there is tension with low redshift observations, since a significant fraction of GRB hosts are predicted to have (near-)solar metallicity. This is in contrast to observations, unless obscured, metal-rich hosts are preferentially missed in current datasets, and suggests that lower efficiencies of the metal-independent GRB channel might be preferred following a comprehensive fit from complete samples. Overall, we are able to establish the presence of a metallicity bias for GRB production, but continued characterization of GRB host galaxies is needed to quantify its strength.
Oxygen is widely used to tune the performance of chalcogenide phase-change materials in the usage of phase-Change random access memory (PCRAM) which is considered as the most promising next-generation non-volatile memory. However, the microscopic rol e of oxygen in the write-erase process, i.e., the reversible phase transition between crystalline and amorphous state of phase-change materials is not clear yet. Using oxygen doped GeTe as an example, this work unravels the role of oxygen at the atomic scale by means of ab initio total energy calculations and ab initio molecular dynamics simulations. Our main finding is that after the amorphization and the subsequent re-crystallization process simulated by ab initio molecular dynamics, oxygen will drag one Ge atom out of its lattice site and both atoms stay in the interstitial region near the Te vacancy that was originally occupied by the oxygen, forming a dumbbell-like defect (O-VTe-Ge), which is in sharp contrast to the results of ab initio total energy calculations at 0 K showing that the oxygen prefers to substitute Te in crystalline GeTe. This specific defect configuration is found to be responsible for the slower crystallization speed and hence the improved data retention of oxygen doped GeTe as reported in recent experimental work. Moreover, we find that the oxygen will increase the effective mass of the carrier and thus increases the resistivity of GeTe. Our results unravel the microscopic mechanism of the oxygen-doping optimization of phase-change material GeTe, and the present reported mechanism can be applied to other oxygen doped ternary chalcogenide phase-change materials.
75 - Zhen Liu , Bai-Xiang Xu 2020
Understanding the appearance of commensurate and incommensurate modulations in perovskite antiferroelectrics (AFEs) is of great importance for material design and engineering. The dielectric and elastic properties of the AFE domain boundaries are lac k of investigation. In this work, a novel Landau theory is proposed to understand the transformation of AFE commensurate and incommensurate phases, by considering the coupling between the oxygen octahedral tilt mode and the polar mode. The derived relationship between the modulation periodicity and temperature is in good agreement with the experimental results. Using the phase field study, we show that the polarization is suppressed at the AFE domain boundaries, contributing to a remnant polarization and local elastic stress field in AFE incommensurate phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا