ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer Observations of High Redshift QSOs

67   0   0.0 ( 0 )
 نشر من قبل Dean Hines Ph.D.
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. C. Hines




اسأل ChatGPT حول البحث

We have observed 13 z >= 4.5 QSOs using the Multiband Imaging Photometer for Spitzer, nine of which were also observed with the Infrared Array Camera. The observations probe rest wavelengths ~ 0.6-4.3 micron, bracketing the local minimum in QSO spectral energy distributions (SEDs) between strong optical emission associated directly with accretion processes and thermal emission from hot dust heated by the central engine. The new Spitzer photometry combined with existing measurements at other wavelengths shows that the SEDs of high redshift QSOs (z >= 4.5) do not differ significantly from typical QSOs of similar luminosity at lower redshifts (z <~ 2). This behavior supports other indications that all the emission components and physical structures that characterize QSO activity can be established by z = 6.4. The similarity also suggests that some QSOs at high redshift will be very difficult to identify because they are viewed along dust-obscured sight lines.

قيم البحث

اقرأ أيضاً

80 - N. Seymour 2006
We present the results of a comprehensive Spitzer survey of 70 radio galaxies across 1<z<5.2. Using IRAC, IRS and MIPS imaging we determine the rest-frame AGN contribution to the stellar emission peak at 1.6um. The stellar luminosities are found to b e consistent with that of a giant elliptical with a stellar mass of 10^11-12Msun. The mean stellar mass remains constant at ~10^11.5Msun up to z=3 indicating that the upper end of the mass function is already in place by this redshift. The mid-IR luminosities imply bolometric IR luminosities that would classify all sources as ULIRGs. The mid-IR to radio luminosity generally correlate implying a common origin for these emissions. The ratio is higher than that found for lower redshift, ie z<1, radio galaxies.
91 - Casey Papovich 2005
We investigate the properties of massive galaxies at z=1-3.5 using HST observations, ground-based near-IR imaging, and Spitzer Space Telescope observations at 3-24 micron. We identify 153 distant red galaxies (DRGs) with J-K > 2.3 mag (Vega) in the s outhern GOODS field. This sample is approximately complete in stellar mass for passively evolving galaxies above 10^11 solar masses and z < 3. The galaxies identified by this selection are roughly split between objects whose optical and near-IR rest-frame light is dominated by evolved stars combined with ongoing star formation, and galaxies whose light is dominated by heavily reddened starbursts. Very few of the galaxies (< 10%) have no indication of current star formation. Using SFR estimates that include the reradiated IR emission, the DRGs at z=1.5-3 with stellar masses > 10^11 solar masses have specific SFRs (SFRs per unit stellar mass) ranging from 0.2 to 10 Gyr^-1, with a mean value of ~2.4 Gyr^-1. The DRGs with stellar masses > 10^11 solar masses and 1.5 < z < 3 have integrated specific SFRs greater the global value over all galaxies. In contrast, we find that galaxies at z = 0.3-0.75 with these stellar masses have integrated specific SFRs less than the global value, and more than an order of magnitude lower than that for massive DRGs at z = 1.5-3. At z < 1, lower-mass galaxies dominate the overall cosmic mass assembly. This suggests that the bulk of star formation in massive galaxies occurs at early cosmic epochs and is largely complete by z~1.5. [Abridged]
We present a sample of $i_{775}$-dropout candidates identified in five Hubble Advanced Camera for Surveys fields centered on Sloan Digital Sky Survey QSOs at redshift $zsim 6$. Our fields are as deep as the Great Observatory Origins Deep Survey (GOOD S) ACS images which are used as a reference field sample. We find them to be overdense in two fields, underdense in two fields, and as dense as the average density of GOODS in one field. The two excess fields show significantly different color distributions from that of GOODS at the 99% confidence level, strengthening the idea that the excess objects are indeed associated with the QSO. The distribution of $i_{775}$-dropout counts in the five fields is broader than that derived from GOODS at the 80% to 96% confidence level, depending on which selection criteria were adopted to identify $i_{775}$-dropouts; its width cannot be explained by cosmic variance alone. Thus, QSOs seem to affect their environments in complex ways. We suggest the picture where the highest redshift QSOs are located in very massive overdensities and are therefore surrounded by an overdensity of lower mass halos. Radiative feedback by the QSO can in some cases prevent halos from becoming galaxies, thereby generating in extreme cases an underdensity of galaxies. The presence of both enhancement and suppression is compatible with the expected differences between lines of sight at the end of reionization as the presence of residual diffuse neutral hydrogen would provide young galaxies with shielding from the radiative effects of the QSO.
XMM-Newton observations of 29 high redshift (z>2) quasars, including seven radio-quiet, 16 radio-loud and six Broad Absorption Line (BAL) objects, are presented; due to the high redshifts, the rest-frame energy bands extend up to ~30-70 keV. Over 2-1 0 keV, the quasars can be well fitted in each case by a simple power-law, with no strong evidence for iron emission lines. The lack of iron lines is in agreement both with dilution by the radio jet emission (for the radio-loud quasars) and the X-ray Baldwin effect. No Compton reflection humps at higher energies (i.e., above 10 keV in the rest frame) are detected either. Over the broad-band (0.3-10 keV), approximately half (nine out of 16) of the radio-loud quasars are intrinsically absorbed, with the values of N_H generally being 1-2 x 10^22 cm^-2 in the rest frames of the objects. None of the seven radio-quiet objects shows excess absorption, while four of the six BAL quasars are absorbed. The radio-loud quasars have flatter continuum slopes than their radio-quiet counterparts (Gamma_RL ~ 1.55; Gamma_RQ ~ 1.98 over 2-10 keV), while, after modelling the absorption, the underlying photon index for the six BAL quasars is formally consistent with the non-BAL radio-quiet objects.
70 - C. L. Carilli 2000
We present detections of emission at 250 GHz (1.2 mm) from two high redshift QSOs from the Sloan Digital Sky Survey sample using the bolometer array at the IRAM 30m telescope. The sources are SDSSp 015048.83+004126.2 at z = 3.7, and SDSSp J033829.31+ 002156.3 at z = 5.0, which is the third highest redshift QSO known, and the highest redshift mm emitting source yet identified. We also present deep radio continuum imaging of these two sources at 1.4 GHz using the Very Large Array. The combination of cm and mm observations indicate that the 250 GHz emission is most likely thermal dust emission, with implied dust masses of 1e8 M_solar. We consider possible dust heating mechanisms, including UV emission from the active nucleus (AGN), and a massive starburst concurrent with the AGN, with implied star formation rates > 1e3 M_solar/year.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا