ﻻ يوجد ملخص باللغة العربية
We present a sample of $i_{775}$-dropout candidates identified in five Hubble Advanced Camera for Surveys fields centered on Sloan Digital Sky Survey QSOs at redshift $zsim 6$. Our fields are as deep as the Great Observatory Origins Deep Survey (GOODS) ACS images which are used as a reference field sample. We find them to be overdense in two fields, underdense in two fields, and as dense as the average density of GOODS in one field. The two excess fields show significantly different color distributions from that of GOODS at the 99% confidence level, strengthening the idea that the excess objects are indeed associated with the QSO. The distribution of $i_{775}$-dropout counts in the five fields is broader than that derived from GOODS at the 80% to 96% confidence level, depending on which selection criteria were adopted to identify $i_{775}$-dropouts; its width cannot be explained by cosmic variance alone. Thus, QSOs seem to affect their environments in complex ways. We suggest the picture where the highest redshift QSOs are located in very massive overdensities and are therefore surrounded by an overdensity of lower mass halos. Radiative feedback by the QSO can in some cases prevent halos from becoming galaxies, thereby generating in extreme cases an underdensity of galaxies. The presence of both enhancement and suppression is compatible with the expected differences between lines of sight at the end of reionization as the presence of residual diffuse neutral hydrogen would provide young galaxies with shielding from the radiative effects of the QSO.
We have observed 13 z >= 4.5 QSOs using the Multiband Imaging Photometer for Spitzer, nine of which were also observed with the Infrared Array Camera. The observations probe rest wavelengths ~ 0.6-4.3 micron, bracketing the local minimum in QSO spect
XMM-Newton observations of 29 high redshift (z>2) quasars, including seven radio-quiet, 16 radio-loud and six Broad Absorption Line (BAL) objects, are presented; due to the high redshifts, the rest-frame energy bands extend up to ~30-70 keV. Over 2-1
We present detections of emission at 250 GHz (1.2 mm) from two high redshift QSOs from the Sloan Digital Sky Survey sample using the bolometer array at the IRAM 30m telescope. The sources are SDSSp 015048.83+004126.2 at z = 3.7, and SDSSp J033829.31+
A preliminary analysis of fields around 20 mainly radio-quiet QSOs (RQQs) at intermediate redshift is summarized. We find overdensities of faint sources around 50% of our observed QSOs suggesting that they are located in groups or even clusters of galaxies.
The early stage of massive galaxy evolution often involves outflows driven by a starburst or a central quasar plus cold mode accretion (infall), which adds to the mass build-up in the galaxies. To study the nature of these infall and outflows in the