ﻻ يوجد ملخص باللغة العربية
We show that the energy density spectrum of the primordial gravitational waves has characteristic features due to the successive changes in the relativistic degrees of freedom during the radiation era. These changes make the evolution of radiation energy density deviate from the conventional adiabatic evolution, rho_r~ a^{-4}, and thus cause the expansion rate of the universe to change suddenly at each transition which, in turn, modifies the spectrum of primordial gravitational waves. We take into account all the particles in the Standard Model of elementary particles. In addition, free-streaming of neutrinos damps the amplitude of gravitational waves, leaving characteristic features in the energy density spectrum. Our calculations are solely based on the standard model of cosmology and particle physics, and therefore these features must exist. Our calculations significantly improve the previous ones which ignored these effects and predicted a smooth, featureless spectrum.
Primordial gravitational waves generated during inflation lead to the B-mode polarization in the cosmic microwave background and a stochastic gravitational wave background in the Universe. We will explore the current constraint on the tilt of primord
An observable stochastic background of gravitational waves is generated whenever primordial black holes are created in the early universe thanks to a small-scale enhancement of the curvature perturbation. We calculate the anisotropies and non-Gaussia
The production of a primordial stochastic gravitational-wave background by processes occuring in the early Universe is expected in a broad range of models. Observing this background would open a unique window onto the Universes evolutionary history.
Primordial Black Holes (PBH) from peaks in the curvature power spectrum could constitute today an important fraction of the Dark Matter in the Universe. At horizon reentry, during the radiation era, order one fluctuations collapse gravitationally to
Primordial black holes (PBHs) can form as a result of primordial scalar perturbations at small scales. This PBH formation scenario has associated gravitational wave (GW) signatures from second-order GWs induced by the primordial curvature perturbatio