ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust in spiral disks: opacity profiles from FIR emission and counts of distant galaxies

60   0   0.0 ( 0 )
 نشر من قبل Benne W. Holwerda
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. W. Holwerda




اسأل ChatGPT حول البحث

Dust emission in the far-infrared (FIR) characterizes the temperature and quantity of interstellar dust in a spiral disk. The three Spitzer/MIPS bands are well suited to measuring the gradient in temperature and the total optical depth in the disk of a spiral galaxy. Another way to estimate the quantity of dust in a spiral disk is the Synthetic Field Method (SFM, Gonzalez et al. 1998), which uses the number of distant field galaxies seen through the disk of the nearby spiral. The optical depth estimated from this method can be compared to the values derived from the FIR emission. Since the two techniques depend on different assumptions regarding the dust geometry and emissivity, this comparison between the optical depth profiles can potentially shed light on the structure and quantity of the ISM in spiral disks, especially any colder components. The dust responsible for the opacity from distant galaxy counts appears to be predominantly cold (T < 20 K.). The differences between the radial absorption profiles can be explained by spiral arms in the SFM measurements. Taken over the same aperture, galaxy counts show higher extinction values than the FIR derived ones. The implications for dust geometry can hopefully be explored with a more rigorous estimate of dust mass from the FIR fluxes.



قيم البحث

اقرأ أيضاً

53 - B. W. Holwerda 2004
Dust extinction can be determined from the number of distant field galaxies seen through a spiral disk. To calibrate this number for the crowding and confusion introduced by the foreground image, Gonzalez et al.(1998) and Holwerda et al. (2005) devel oped the ``Synthetic Field Method (SFM), which analyses synthetic fields constructed by adding various deep exposures of unobstructed background fields to the candidate foreground galaxy field. The advantage of the SFM is that it gives the average opacity for area of galaxy disk without assumptions about either the distribution of absorbers or of the disk starlight. However it is limited by low statistics of the surviving field galaxies, hence the need to combine a larger sample of fields. This paper presents the first results for a sample of 32 deep HST/WFPC2 archival fields of 29 spirals. The radial profiles of average dust extinction in spiral galaxies based on calibrated counts of distant field galaxies is presented here, both for individual galaxies as well as for composites from our sample. The effects of inclination, spiral arms and Hubble type on the radial extinction profile are discussed. (Abbreviated)
227 - B. W. Holwerda 2003
We have applied the Synthetic Field Method on a sample of ~20 nearby galaxies in order to determine the opacity of their disks. We present preliminary results on the radial dependence of cold dust absorption for 3 examples. The spirals NGC4535 and NG C4725 show significant absorption at a half-light radius. UGC2302, a LSB galaxy, shows much less opacity.
114 - B. W. Holwerda 2012
Our aim is to explore the relation between gas, atomic and molecular, and dust in spiral galaxies. Gas surface densities are from atomic hydrogen and CO line emission maps. To estimate the dust content, we use the disk opacity as inferred from the nu mber of distant galaxies identified in twelve HST/WFPC2 fields of ten nearby spiral galaxies. The observed number of distant galaxies is calibrated for source confusion and crowding with artificial galaxy counts and here we verify our results with sub-mm surface brightnesses from archival Herschel-SPIRE data. We find that the opacity of the spiral disk does not correlate well with the surface density of atomic (Hi) or molecular hydrogen (H2) alone implying that dust is not only associated with the molecular clouds but also the diffuse atomic disk in these galaxies. Our result is a typical dust-to-gas ratio of 0.04, with some evidence that this ratio declines with galactocentric radius, consistent with recent Herschel results. We discuss the possible causes of this high dust-to-gas ratio; an over-estimate of the dust surface-density, an under-estimate of the molecular hydrogen density from CO maps or a combination of both. We note that while our value of the mean dust-to-gas ratio is high, it is consistent with the metallicity at the measured radii if one assumes the Pilyugin & Thuan calibration of gas metallicity.
Most radiative transfer models assume that dust in spiral galaxies is distributed exponentially. In this paper our goal is to verify this assumption by analysing the two-dimensional large-scale distribution of dust in galaxies from the DustPedia samp le. For this purpose, we make use of Herschel imaging in five bands, from 100 to 500{mu}m, in which the cold dust constituent is primarily traced and makes up the bulk of the dust mass in spiral galaxies. For a subsample of 320 disc galaxies, we successfully perform a simultaneous fitting with a single Sersic model of the Herschel images in all five bands using the multiband modelling code GALFITM. We report that the Sersic index $n$, which characterises the shape of the Sersic profile, lies systematically below 1 in all Herschel bands and is almost constant with wavelength. The average value at 250{mu}m is $0.67pm0.37$ (187 galaxies are fitted with $n_{250}leq0.75$, 87 galaxies have $0.75<n_{250}leq1.25$, and 46 - with $n_{250}>1.25$). Most observed profiles exhibit a depletion in the inner region (at $r<0.3-0.4$ of the optical radius $r_{25}$ ) and are more or less exponential in the outer part. We also find breaks in the dust emission profiles at longer distances $(0.5-0.6)r_{25}$ which are associated with the breaks in the optical and near-infrared. We assume that the observed deficit of dust emission in the inner galaxy region is related to the depression in the radial profile of the HI surface density in the same region because the atomic gas reaches high enough surface densities there to be transformed into molecular gas. If a galaxy has a triggered star formation in the inner region (for example, because of a strong bar instability, which transfers the gas inwards to the centre, or a pseudobulge formation), no depletion or even an excess of dust emission in the centre is observed.
The opacity of a spiral disk due to dust absorption influences every measurement we make of it in the UV and optical. Two separate techniques directly measure the total absorption by dust in the disk: calibrated distant galaxy counts and overlapping galaxy pairs. The main results from both so far are a semi-transparent disk with more opaque arms, and a relation between surface brightness and disk opacity. In the Spitzer era, SED models of spiral disks add a new perspective on the role of dust in spiral disks. Combined with the overall opacity from galaxy counts, they yield a typical optical depth of the dusty ISM clouds: 0.4 that implies a size of $sim$ 60 pc. Work on galaxy counts is currently ongoing on the ACS fields of M51, M101 and M81. Occulting galaxies offer the possibility of probing the history of disk opacity from higher redshift pairs. Evolution in disk opacity could influence distance measurements (SN1a, Tully-Fisher relation). Here, we present first results from spectroscopically selected occulting pairs in the SDSS. The redshift range for this sample is limited, but does offer a first insight into disk opacity evolution as well as a reference for higher redshift measurements. Spiral disk opacity has not undergone significant evolution since z=0.2. HST imaging would help disentangle the effects of spiral arms in these pairs. Many more mixed-morphology types are being identified in SDSS by the GalaxyZoo project. The occulting galaxy technique can be pushed to a redshift of 1 using many pairs identified in the imaging campaigns with HST (DEEP2, GEMS, GOODS, COSMOS).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا