ﻻ يوجد ملخص باللغة العربية
Dust extinction can be determined from the number of distant field galaxies seen through a spiral disk. To calibrate this number for the crowding and confusion introduced by the foreground image, Gonzalez et al.(1998) and Holwerda et al. (2005) developed the ``Synthetic Field Method (SFM), which analyses synthetic fields constructed by adding various deep exposures of unobstructed background fields to the candidate foreground galaxy field. The advantage of the SFM is that it gives the average opacity for area of galaxy disk without assumptions about either the distribution of absorbers or of the disk starlight. However it is limited by low statistics of the surviving field galaxies, hence the need to combine a larger sample of fields. This paper presents the first results for a sample of 32 deep HST/WFPC2 archival fields of 29 spirals. The radial profiles of average dust extinction in spiral galaxies based on calibrated counts of distant field galaxies is presented here, both for individual galaxies as well as for composites from our sample. The effects of inclination, spiral arms and Hubble type on the radial extinction profile are discussed. (Abbreviated)
Dust emission in the far-infrared (FIR) characterizes the temperature and quantity of interstellar dust in a spiral disk. The three Spitzer/MIPS bands are well suited to measuring the gradient in temperature and the total optical depth in the disk of
We have applied the Synthetic Field Method on a sample of ~20 nearby galaxies in order to determine the opacity of their disks. We present preliminary results on the radial dependence of cold dust absorption for 3 examples. The spirals NGC4535 and NG
In this paper we explore the relation between dust extinction and stellar light distribution in disks of spiral galaxies. Extinction influences our dynamical and photometric perception of disks, since it can distort our measurement of the contributio
The quantity of dust in a spiral disk can be estimated using the dusts typical emission or the extinction of a known source. In this paper, we compare two techniques, one based on emission and one on absorption, applied on sections of fourteen disk g
The dust extinction in spiral disks can be estimated from the counts of background field galaxies, provided the deleterious effects of confusion introduced by structure in the image of the foreground spiral disk can be calibrated. Gonzalez et al. (19