ترغب بنشر مسار تعليمي؟ اضغط هنا

VLT/UVES Observations of Interstellar Molecules and Diffuse Bands in the Magellanic Clouds

59   0   0.0 ( 0 )
 نشر من قبل Daniel Welty
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. E. Welty




اسأل ChatGPT حول البحث

We discuss the abundances of interstellar CH, CH+, and CN in the Magellanic Clouds (MC), derived from spectra of 7 SMC and 13 LMC stars obtained (mostly) with the VLT/UVES. CH and/or CH+ are detected toward 3 SMC and 9 LMC stars; CN is detected toward 2 stars. In the MC, the CH/H2 ratio is comparable to that found for diffuse Galactic molecular clouds in some sight lines, but is lower by factors up to 10-15 in others. The abundance of CH in the MC thus appears to depend on local physical conditions -- and not just on metallicity. The observed relationships between the column density of CH and those of CN, CH+, Na I, and K I in the MC are generally consistent with the trends observed in our Galaxy. Using existing data for the rotational populations of H2, we estimate temperatures, radiation field strengths, and local hydrogen densities for the diffuse molecular gas. Densities estimated from N(CH), assuming that CH is produced via steady-state gas-phase reactions, are considerably higher; much better agreement is found by assuming that the CH is made via the (still undetermined) process(es) responsible for the observed CH+. The UVES spectra also reveal absorption from the diffuse interstellar bands at 5780, 5797, and 6284 A in the MC. On average, the three DIBs are weaker by factors of 7-9 (LMC) and about 20 (SMC), compared to those observed in Galactic sight lines with similar N(H I), and by factors of order 2-6, relative to E(B-V), N(Na I), and N(K I). The detection of several of the ``C2 DIBs, with strengths similar to those in comparable Galactic sight lines, however, indicates that no single, uniform scaling factor (e.g., one related to metallicity) applies to all DIBs (or all sight lines) in the MC. (abstract abridged)



قيم البحث

اقرأ أيضاً

In this paper, we present new data with interstellar C2 (Phillips bands A-X), from observations made with the Ultraviolet-Visual Echelle Spectrograph of the European Southern Observatory. We have determined the interstellar column densities and excit ation temperatures of C2 for nine Galactic lines. For seven of these, C2 has never been observed before, so in this case the still small sample of interstellar clouds (26 lines of sight), where a detailed analysis of C2 excitation has been made, has increased significantly. This paper is a continuation of previous works where interstellar molecules (C2 and diffuse interstellar bands) have been analysed. Because the sample of interstellar clouds with C2 has increased, we can show that the width and shape of the profiles of some diffuse interstellar bands (6196 and 5797 A) apparently depend on the gas kinetic and rotational temperatures of C2; the profiles are broader because of the higher values of the gas kinetic and rotational temperatures of C2. There are also diffuse interstellar bands (4964 and 5850 A) for which this effect does not exist.
124 - Haoyu Fan 2017
We study the behavior of eight diffuse interstellar bands (DIBs) in different interstellar environments, as characterized by the fraction of hydrogen in molecular form [$f$(H$_2$)], with comparisons to the corresponding behavior of various known atom ic and molecular species. The equivalent widths of the five normal DIBs ($lambdalambda$5780.5, 5797.1, 6196.0, 6283.8, and 6613.6), normalized to $E(B-V)$, show a Lambda-shaped behavior: they increase at low $f$(H$_2$), peak at $f$(H$_2$) ~ 0.3, and then decrease. The similarly normalized column densities of Ca, Ca$^+$, Ti$^+$, and CH$^+$ also decline for $f$(H$_2$) > 0.3. In contrast, the normalized column densities of Na, K, CH, CN, and CO increase monotonically with $f$(H$_2$), and the trends exhibited by the three C$_2$ DIBs ($lambdalambda$4726.8, 4963.9, and 4984.8) lie between those two general behaviors. These trends with $f$(H$_2$) are accompanied by cosmic scatter, the dispersion at any given $f$(H$_2$) being significantly larger than the individual errors of measurement. The Lambda-shaped trends suggest the balance between creation and destruction of the DIB carriers differs dramatically between diffuse atomic and diffuse molecular clouds; additional processes besides ionization and shielding are needed to explain those observed trends. Except for several special cases, the highest $W$(5780)/$W$(5797) ratios, characterizing the so-called sigma-zeta effect, occur only at $f$(H$_2$) < 0.2. We propose a sequence of DIBs based on trends in their pair-wise strength ratios with increasing $f$(H$_2$). In order of increasing environmental density, we find the $lambda$6283.8 and $lambda$5780.5 DIBs, the $lambda$6196.0 DIB, the $lambda$6613.6 DIB, the $lambda$5797.1 DIB, and the C$_2$ DIBs.
The identification of the carriers of the diffuse interstellar bands (DIBs) remains to be established, with the exception of five bands attributed to C60+, although it is generally agreed that DIB carriers should be large carbon-based molecules (with ~10-100 atoms) in the gas phase, such as polycyclic aromatic hydrocarbons (PAHs), long carbon chains or fullerenes. More specific possible carriers among PAHs are investigated, namely elongated molecules, which could explain a correlation between the DIB wavelength and the apparent UV resilience of their carriers. We address the case of polyacenes, C4N+2-H2N+4, with N~10-18 fused rectilinear aligned hexagons. Polyacenes are attractive DIB carrier candidates because their high symmetry and large linear size allow them to form regular series of bands in the visible range with strengths larger than most other PAHs, as confirmed by recent laboratory results up to undecacene (C46H26). Those with very strong bands in the DIB spectral domain are just at the limit of stability against UV photodissociation. They are part of the prominent PAH family of interstellar carbon compounds, meaning that only ~10-5 of the total PAH abundance is enough to account for a medium-strength DIB. After summarizing the current knowledge about the properties of polyacenes and recent laboratory results, the likelihood that they might meet the criteria for being carriers of some DIBs is addressed by reviewing the following properties: wavelength and strength of their series of visible bands; interstellar stability and abundances, charge state and hydrogenation; and DIB rotation profiles. No definite inconsistency has been identified that precludes polyacenes from being the carriers of some DIBs with medium or weak strength, including the so-called C2 DIBs. But additional experimental data about long acenes and their visible bands are needed to make robust conclusions
132 - Alain Omont 2015
Recently, the presence of fullerenes in the interstellar medium (ISM) has been confirmed especially with the first confirmed identification of two strong diffuse interstellar bands (DIBs) with C60+. This justifies reassesing the importance of interst ellar fullerenes of various sizes with endohedral or exohedral inclusions and heterofullerenes (EEHFs). The phenomenology of fullerenes is complex. In addition to fullerene formation in shock shattering, fully dehydrogenated PAHs in diffuse interstellar (IS) clouds could perhaps efficiently transform into fullerenes including EEHFs. But it is extremely difficult to assess their expected abundance, composition and size distribution, except for C60+. EEHFs share many properties with C60, as regards stability, formation/destruction and chemical processes, and many basic spectral features. We address the interstellar importance of various EEHFs as possible DIB carriers. Specifically, we discuss IS properties and the contributions of fullerenes of various sizes and charge such as C60+, metallofullerenes, heterofullerenes, fulleranes, fullerene-PAH compounds, H2@C60. We conclude that the landscape of interstellar fullerenes is probably much richer than heretofore realized. EEHFs, together with pure fullerenes of various sizes, have properties necessary to be suitably carriers of DIBs: carbonaceous nature; stability and resilience in the ISM; various heteroatoms and ionization states; relatively easy formation; few stable isomers; right spectral range; energy internal conversion; Jahn-Teller fine structure. This is supported by the C60+ DIBs. But, the lack of information about optical spectra other than C60 and IS abundances still precludes definitive assessment of the importance of fullerenes as DIB carriers. Their compounds could significantly contribute to DIBs, but it still seems difficult that they are the only important DIB carriers.
165 - Keith T. Smith 2013
We present the first sample of diffuse interstellar bands (DIBs) in the nearby galaxy M33. Studying DIBs in other galaxies allows the behaviour of the carriers to be examined under interstellar conditions which can be quite different from those of th e Milky Way, and to determine which DIB properties can be used as reliable probes of extragalactic interstellar media. Multi-object spectroscopy of 43 stars in M33 has been performed using Keck/DEIMOS. The stellar spectral types were determined and combined with literature photometry to determine the M33 reddenings E(B-V)_M33. Equivalent widths or upper limits have been measured for the {lambda}5780 DIB towards each star. DIBs were detected towards 20 stars, demonstrating that their carriers are abundant in M33. The relationship with reddening is found to be at the upper end of the range observed in the Milky Way. The line of sight towards one star has an unusually strong ratio of DIB equivalent width to E(B-V)_M33, and a total of seven DIBs were detected towards this star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا