ترغب بنشر مسار تعليمي؟ اضغط هنا

The Southern Flanking Fields of the 25 Orionis Group

45   0   0.0 ( 0 )
 نشر من قبل Peregrine McGehee
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The stellar group surrounding the Be (B1Vpe) star 25 Orionis was discovered to be a pre-main-sequence population by the Centro de Investigaciones de Astronomia (CIDA) Orion Variability Survey and subsequent spectroscopy. We analyze Sloan Digital Sky Survey multi-epoch photometry to map the southern extent of the 25 Ori group and to characterize its pre-main-sequence population. We compare this group to the neighboring Orion OB1a and OB1b subassociations and to active star formation sites (NGC 2068/NGC 2071) within the Lynds 1630 dark cloud. We find that the 25 Ori group has a radius of 1.4 degrees, corresponding to 8-11 pc at the distances of Orion OB1a and OB1b. Given that the characteristic sizes of young open clusters are a few pc or less this suggests that 25 Ori is an unbound association rather than an open cluster. Due to its PMS population having a low Classical T Tauri fraction (~10%) we conclude that the 25 Ori group is of comparable age to the 11 Myr Orion OB1a subassociation.

قيم البحث

اقرأ أيضاً

We present a study of 15 new brown dwarfs belonging to the $sim7$ Myr old 25 Orionis group and Orion OB1a sub-association with spectral types between M6 and M9 and estimated masses between $sim0.07$M$_odot$ and $sim0.01$ M$_odot$. By comparing them t hrough a Bayesian method with low mass stars ($0.8lesssim$ M/M$_odotlesssim0.1$) from previous works in the 25 Orionis group, we found statistically significant differences in the number fraction of classical T Tauri stars, weak T Tauri stars, class II, evolved discs and purely photospheric emitters at both sides of the sub-stellar mass limit. Particularly we found a fraction of $3.9^{+2.4}_{-1.6}~%$ low mass stars classified as CTTS and class II or evolved discs, against a fraction of $33.3^{+10.8}_{-9.8}~%$ in the sub-stellar mass domain. Our results support the suggested scenario in which the dissipation of discs is less efficient for decreasing mass of the central object.
Eighteen days of MERLIN data and 42 hours of A-array VLA data at 1.4 GHz have been combined to image a 10-arcmin field centred on the Hubble Deep and Flanking Fields (HDF and HFF). A complete sample of 92 radio sources with 1.4-GHz flux densities abo ve 40 microJy has been imaged using MERLIN+VLA. The images are amongst the most sensitive yet made at 1.4 GHz, with rms noise levels of 3.3 microJy/beam in the 0.2-arcsec images. Virtually all the sources are resolved, with angular sizes in the range 0.2 to 3 arcsec. No additional sources were detected down to 23 microJy in the central 3 arcmin, indicating that sources fainter than 40 microJy are heavily resolved with MERLIN and must have typical angular sizes greater than 0.5 arcsec. Compact radio sources were used to align the optical data to the ICRF, to <50 mas in the HDF. We find a statistical association of very faint (2 microJy and above) radio sources with optically bright HDF galaxies down to about 23 mag. Of the 92 radio sources above 40 microJy, about 85 percent are identified with galaxies brighter than about I = 25 mag; the remaining 15 percent are associated with optically faint systems. We identify several very red, optically faint systems including the the strongest sub-mm source in the HDF, HDF850.1. 72 percent of the radio sources are starburst or AGN-type systems; the remainder are unclassified. The proportion of starburst systems increases with decreasing flux density; below 100 microJy 70 percent of the sources are starburst-type systems in the redshift range 0.3 -- 1.3. Chandra detections are associated with 55 of the 92 radio sources but their X-ray flux densities do not appear to be correlated with the radio flux densities or morphologies.
56 - Genaro Suarez 2017
The Orion OB1a sub-association is a rich low mass star (LMS) region. Previous spectroscopic studies have confirmed 160 LMSs in the 25 Orionis stellar group (25 Ori), which is the most prominent overdensity of Orion OB1a. Nonetheless, the current cens us of the 25 Ori members is estimated to be less than 50% complete, leaving a large number of members to be still confirmed. We retrieved 172 low-resolution stellar spectra in Orion OB1a observed as ancillary science in the SDSS-III/BOSS survey, for which we classified their spectral types and determined physical parameters. To determine memberships, we analyzed the H$_alpha$ emission, LiI$lambda$6708 absorption, and NaI$lambdalambda$8183, 8195 absorption as youth indicators in stars classified as M-type. We report 50 new LMSs spread across the 25 Orionis, ASCC 18, and ASCC 20 stellar groups with spectral types from M0 to M6, corresponding to a mass range of 0.10$le m/textrm{M}_odot le$0.58. This represents an increase of 50% in the number of known LMSs in the area and a net increase of 20% in the number of 25 Ori members in this mass range. Using parallax values from the Gaia DR1 catalog, we estimated the distances to these three stellar groups and found that they are all co-distant, at 338$pm$66 pc. We analyzed the spectral energy distributions of these LMSs and classified their disks by evolutionary classes. Using H-R diagrams, we found a suggestion that 25 Ori could be slightly older that the other two observed groups in Orion OB1a.
The 32 Orionis group was discovered almost a decade ago and despite the fact that it represents the first northern, young (age ~ 25 Myr) stellar aggregate within 100 pc of the Sun ($d simeq 93$ pc), a comprehensive survey for members and detailed cha racterisation of the group has yet to be performed. We present the first large-scale spectroscopic survey for new (predominantly M-type) members of the group after combining kinematic and photometric data to select candidates with Galactic space motion and positions in colour-magnitude space consistent with membership. We identify 30 new members, increasing the number of known 32 Ori group members by a factor of three and bringing the total number of identified members to 46, spanning spectral types B5 to L1. We also identify the lithium depletion boundary (LDB) of the group, i.e. the luminosity at which lithium remains unburnt in a coeval population. We estimate the age of the 32 Ori group independently using both isochronal fitting and LDB analyses and find it is essentially coeval with the {beta} Pictoris moving group, with an age of $24pm4$ Myr. Finally, we have also searched for circumstellar disc hosts utilising the AllWISE catalogue. Although we find no evidence for warm, dusty discs, we identify several stars with excess emission in the WISE W4-band at 22 {mu}m. Based on the limited number of W4 detections we estimate a debris disc fraction of $32^{+12}_{-8}$ per cent for the 32 Ori group.
We present trigonometric, photometric, and photographic distances to 1748 southern ($delta leq$0$^circ$) M dwarf systems with $mu ge$ 0farcs18 yr$^{-1}$, of which 1404 are believed to lie within 25 parsecs of the Sun. The stars have 6.67 $leq$ $V_J$ $leq$ 21.38 and 3.50 $leq$ ($V_J-K_s$) $leq$ 9.27, covering the entire M dwarf spectral sequence from M0.0V through M9.5V. This sample therefore provides a comprehensive snapshot of our current knowledge of the southern sky for the nearest M dwarfs that dominate the stellar population of the Galaxy. Roughly one-third of the 1748 systems, each of which has an M dwarf primary, have published high quality parallaxes, including 179 from the RECONS astrometry program. For the remaining systems, we offer photometric distance estimates that have well-calibrated errors. The bulk of these ($sim$700) are based on new $V_JR_{KC}I_{KC}$ photometry acquired at the CTIO/SMARTS 0.9m telescope, while the remaining 500 primaries have photographic plate distance estimates calculated using SuperCOSMOS $B_JR_{59F}I_{IVN}$ photometry. Confirmed and candidate subdwarfs in the sample have been identified, and a census of companions is included.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا