ترغب بنشر مسار تعليمي؟ اضغط هنا

A stellar census of the nearby, young 32 Orionis group

107   0   0.0 ( 0 )
 نشر من قبل Cameron Bell
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 32 Orionis group was discovered almost a decade ago and despite the fact that it represents the first northern, young (age ~ 25 Myr) stellar aggregate within 100 pc of the Sun ($d simeq 93$ pc), a comprehensive survey for members and detailed characterisation of the group has yet to be performed. We present the first large-scale spectroscopic survey for new (predominantly M-type) members of the group after combining kinematic and photometric data to select candidates with Galactic space motion and positions in colour-magnitude space consistent with membership. We identify 30 new members, increasing the number of known 32 Ori group members by a factor of three and bringing the total number of identified members to 46, spanning spectral types B5 to L1. We also identify the lithium depletion boundary (LDB) of the group, i.e. the luminosity at which lithium remains unburnt in a coeval population. We estimate the age of the 32 Ori group independently using both isochronal fitting and LDB analyses and find it is essentially coeval with the {beta} Pictoris moving group, with an age of $24pm4$ Myr. Finally, we have also searched for circumstellar disc hosts utilising the AllWISE catalogue. Although we find no evidence for warm, dusty discs, we identify several stars with excess emission in the WISE W4-band at 22 {mu}m. Based on the limited number of W4 detections we estimate a debris disc fraction of $32^{+12}_{-8}$ per cent for the 32 Ori group.

قيم البحث

اقرأ أيضاً

We report Spitzer Space Telescope IRAC 3.6, 4.5, 5.8 and 8 um and MIPS 24 and 70 um observations of the 32 Ori Group, a recently discovered nearby stellar association situated towards northern Orion. The proximity of the group (~93 pc) has enabled a sensitive search for circumstellar dust around group members, and its age (~20 Myr) corresponds roughly to an epoch thought to be important for terrestrial planet formation in our own solar system. We quantify infrared excess emission due to circumstellar dust among group members, utilizing available optical (e.g. Hipparcos, Tycho) and near-IR (2MASS) photometry in addition to the Spitzer IR photometry. We report 4 out of the 14 objects which exhibit 24 um excess emission more than 4sigma above the stellar photosphere (>20%) though lacking excess emission at shorter wavelengths: HD 35656 (A0Vn), HD 36338 (F4.5), RX J0520.5+0616 (K3), and HD 35499 (F4). Two objects (HD 35656 and RX J0520.0+0612) have 70 um excesses, although the latter lacks 24 um excess emission. The 24 um disk fraction of this group is 29(+14,-9%), which is similar to previous findings for groups of comparable ages and places 32 Ori as the young stellar group with the 2nd most abundant 24 um excesses among groups lacking accreting T Tauri stars (behind only the approximately coeval Beta Pic Moving Group). We also model the infrared excess emission using circumstellar dust disk models, placing constraints on disk parameters including L_IR/L_*, T_disk, characteristic grain distance, and emitting area. The L_IR/L_* values for all the stars can be reasonably explained by steady state disk evolution.
64 - Eric E. Mamajek 2015
The nearest, youngest groups of stars to the Sun provide important samples of age-dated stars for studying circumstellar disk evolution, imaged exoplanets, and brown dwarfs. I briefly comment on the status of the known stellar groups within 100 pc: $ beta$ Pic, AB Dor, UMa, Car-Near, Tuc-Hor and $beta$ Tuc nucleus, Hyades, Col, TW Hya, Car, Coma Ber, 32 Ori, $eta$ Cha, and $chi^1$ For. I also discuss some poorly characterized groups and non-groups. Grades for 2015 of Pass, Satisfactory, or Fail are assigned to the groups for the purposes of age-dating stars and brown dwarfs. I speculate that Tuc-Hor could have provided a supernova ~60 pc away ~2.2 Myr ago which showered the Earth with traces of 60Fe-bearing dust.
The region surrounding the well-known reflection nebula, NGC 7023, illuminated by a Herbig Be star, HD 200775, located in the dark cloud L1174 is studied in this work. Based on the distances and proper motion values from Gaia DR2 of 20 previously kno wn young stellar object candidates, we obtained a distance of 335$pm$11 pc to the cloud complex L1172/1174. Using polarization measurements of the stars projected on the cloud complex, we show additional evidence for the cloud to be at $sim$ 335 pc distance. Using this distance and proper motion values of the YSO candidates, we searched for additional comoving sources in the vicinity of HD 200775 and found 20 new sources which show low infrared excess emission and are of age $sim$ 1 Myr. Among these, 10 YSO candidates and 4 newly identified comoving sources are found to show X-ray emission. Three of the four new sources for which we have obtained optical spectra show H$alpha$ in emission. About 80% of the total sources are found within $sim$ 1 pc distance from HD 200775. Spatial correlation of some of the YSO candidates with the Herschel dust column density peaks suggests that star formation is still active in the region and may have been triggered by HD 200775.
We report the selection and spectroscopic confirmation of 129 new late-type (K3-M6) members of the Tuc-Hor moving group, a nearby (~40 pc), young (~40 Myr) population of comoving stars. We also report observations for 13/17 known Tuc-Hor members in t his spectral type range, and that 62 additional candidates are likely to be unassociated field stars; the confirmation frequency for new candidates is therefore 129/191 = 67%. We have used RVs, Halpha emission, and Li6708 absorption to distinguish contaminants and bona fide members. Our expanded census of Tuc-Hor increases the known population by a factor of ~3 in total and by a factor of ~8 for members with SpT>K3, but even so, the K-M dwarf population of Tuc-Hor is still markedly incomplete. The spatial distribution of members appears to trace a 2D sheet, with a broad distribution in X and Y, but a very narrow distribution (+/-5 pc) in Z. The corresponding velocity distribution is very small, with a scatter of +/-1.1 km/s about the mean UVW velocity. We also show that the isochronal age (20--30 Myr) and the lithium depletion age (40 Myr) disagree, following a trend seen in other PMS populations. The Halpha emission follows a trend of increasing EW with later SpT, as seen for young clusters. We find that members have been depleted of lithium for spectral types of K7.0-M4.5. Finally, our purely kinematic and color-magnitude selection procedure allows us to test the efficiency and completeness for activity-based selection of young stars. We find that 60% of K-M dwarfs in Tuc-Hor do not have ROSAT counterparts and would be omitted in Xray selected samples. GALEX UV-selected samples using a previously suggested criterion for youth achieve completeness of 77% and purity of 78%. We suggest new selection criteria that yield >95% completeness for ~40 Myr populations.(Abridged)
We present an XMM-Newton survey of the part of Orion A cloud south of the Orion Nebula. This survey includes the Lynds 1641 (L1641) dark cloud, a region of the Orion A cloud with very few massive stars and hence a relatively low ambient UV flux, and the region around the O9 III star Iota Orionis. In addition to proprietary data, we used archival XMM data of the Orion Nebula Cluster (ONC) to extend our analysis to a major fraction of the Orion A cloud. We have detected 1060 X-ray sources in L1641 and Iota Ori region. About 94% of the sources have 2MASS & Spitzer counterparts, 204 and 23 being Class II and Class I or protostars objects, respectively. In addition, we have identified 489 X-ray sources as counterparts to Class III candidates, given they are bright in X-rays and appear as normal photospheres at mid-IR wavelengths. The remaining 205 X-ray sources are likely distant AGNs or other galactic sources not related to Orion A. We find that Class III candidates appear more concentrated in two main clusters in L1641. The first cluster of Class III stars is found toward the northern part of L1641, concentrated around Iota Ori. The stars in this cluster are more evolved than those in the Orion Nebula. We estimate a distance of 300-320 pc for this cluster and thus it is closer than the Orion A cloud. Another cluster rich in Class III stars is located in L1641 South and appears to be a slightly older cluster embedded in the Orion A cloud. Furthermore, other evolved Class III stars are found north of the ONC toward NGC 1977.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا