ﻻ يوجد ملخص باللغة العربية
Several mechanisms have been proposed to explain the alignment of grains with the interstellar magnetic field, including paramagnetic dissipation, radiative torques, and supersonic gas-grain streaming. These must compete with disaligning processes, including randomly directed torques arising from collisions with gas atoms. I describe a novel disalignment mechanism for grains that have a time-varying electric dipole moment and that drift across the magnetic field. Depending on the drift speed, this mechanism may yield a much shorter disalignment timescale than that associated with random gas atom impacts. For suprathermally rotating grains, the new disaligning process may be more potent for carbonaceous dust than for silicate dust. This could result in efficient alignment for silicate grains but poor alignment for carbonaceous grains.
The degree to which interstellar grains align with respect to the interstellar magnetic field depends on disaligning as well as aligning mechanisms. For decades, it was assumed that disalignment was due primarily to the random angular impulses a grai
Our understanding of the nature of interstellar grains has evolved considerably over the past half century with the present author and Fred Hoyle being intimately involved at several key stages of progress. The currently fashionable graphite-silicate
Interstellar dust grain alignment causes polarization from UV to mm wavelengths, allowing the study of the geometry and strength of the magnetic field. Over last couple of decades observations and theory have led to the establishment of the Radiative
In interstellar dust grains, internal processes dissipate rotational kinetic energy. The dissipation is accompanied by thermal fluctuations, which transfer energy from the vibrational modes to rotation. Together, these processes are known as internal
Molecules with an amide functional group resemble peptide bonds, the molecular bridges that connect amino acids, and may thus be relevant in processes that lead to the formation of life. In this study, the solid state formation of some of the smalles