ﻻ يوجد ملخص باللغة العربية
In interstellar dust grains, internal processes dissipate rotational kinetic energy. The dissipation is accompanied by thermal fluctuations, which transfer energy from the vibrational modes to rotation. Together, these processes are known as internal relaxation. For the past several years, internal relaxation has been thought to give rise to thermal flipping, with profound consequences for grain alignment theory. I show that thermal flipping is not possible in the limit that the inertia tensor does not vary with time.
Interstellar dust grains are non-spherical and, in some environments, partially aligned along the direction of the interstellar magnetic field. Numerous alignment theories have been proposed, all of which examine the grain rotational dynamics. In 199
In the previous papers in this series, we found that radiative torques can play a major role in the alignment of grains with the interstellar magnetic field. Since the radiative torques can drive the grains to suprathermal rotational speeds, in previ
Several mechanisms have been proposed to explain the alignment of grains with the interstellar magnetic field, including paramagnetic dissipation, radiative torques, and supersonic gas-grain streaming. These must compete with disaligning processes, i
Our understanding of the nature of interstellar grains has evolved considerably over the past half century with the present author and Fred Hoyle being intimately involved at several key stages of progress. The currently fashionable graphite-silicate
The degree to which interstellar grains align with respect to the interstellar magnetic field depends on disaligning as well as aligning mechanisms. For decades, it was assumed that disalignment was due primarily to the random angular impulses a grai