ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical abundances for Hf 2-2, a planetary nebula with the strongest known heavy element recombination lines

51   0   0.0 ( 0 )
 نشر من قبل Xiaowei Liu
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high quality optical spectroscopic observations of the planetary nebula (PN) Hf 2-2. The spectrum exhibits many prominent optical recombination lines (ORLs) from heavy element ions. Analysis of the H {sc i} and He {sc i} recombination spectrum yields an electron temperature of $sim 900$ K, a factor of ten lower than given by the collisionally excited [O {sc iii}] forbidden lines. The ionic abundances of heavy elements relative to hydrogen derived from ORLs are about a factor of 70 higher than those deduced from collisionally excited lines (CELs) from the same ions, the largest abundance discrepancy factor (adf) ever measured for a PN. By comparing the observed O {sc ii} $lambda$4089/$lambda$4649 ORL ratio to theoretical value as a function of electron temperature, we show that the O {sc ii} ORLs arise from ionized regions with an electron temperature of only $sim 630$ K. The current observations thus provide the strongest evidence that the nebula contains another previously unknown component of cold, high metallicity gas, which is too cool to excite any significant optical or UV CELs and is thus invisible via such lines. The existence of such a plasma component in PNe provides a natural solution to the long-standing dichotomy between nebular plasma diagnostics and abundance determinations using CELs on the one hand and ORLs on the other.

قيم البحث

اقرأ أيضاً

[Abridged] Deep optical observations of the spectra of 12 Galactic planetary nebulae (PNe) and 3 Magellanic Cloud PNe were presented in Paper I by Tsamis et al. (2003b), who carried out an abundance analysis using the collisionally excited forbidden lines. Here, the relative intensities of faint optical recombination lines (ORLs) from ions of carbon, nitrogen and oxygen are analysed in order to derive the abundances of these ions relative to hydrogen. We define an abundance discrepancy factor (ADF) as the ratio of the abundance derived for a heavy element ion from its recombination lines to that derived for the same ion from its ultraviolet, optical or infrared collisionally excited lines (CELs). All of the PNe in our sample are found to have ADFs that exceed unity. There is no dependence of the magnitude of the ADF upon the excitation energy of the UV, optical or IR CEL transition used, indicating that classical nebular temperature fluctuations--i.e. in a chemically homogeneous medium--are not the cause of the observed abundance discrepancies. Instead, we conclude that the main cause of the discrepancy is enhanced ORL emission from cold ionized gas located in hydrogen-deficient clumps inside the main body of the nebulae. We have developed a new electron temperature diagnostic, based upon the relative intensities of the OII 4f-3d 4089A and 3p-3s 4649A recombination transitions. For six out of eight PNe for which both transitions are detected, we derive O2+ ORL electron temperatures of <300 K, very much less than the O2+ forbidden-line and Balmer jump temperatures derived for the same nebulae. These results provide direct observational evidence for the presence of H-deficient, cold plasma regions within the nebulae, consistent with gas cooled largely by infrared fine structure and recombination transitions.
(abridged) Deep long-slit optical spectrophotometric observations are presented for 25 Galactic bulge planetary nebulae (GBPNe) and 6 Galactic disk planetary nebulae (GDPNe). The spectra, combined with archival ultraviolet spectra obtained with the I nternational Ultraviolet Explorer (IUE) and infrared spectra obtained with the Infrared Space Observatory (ISO), have been used to carry out a detailed plasma diagnostic and element abundance analysis utilizing both collisional excited lines (CELs) and optical recombination lines (ORLs). Comparisons of plasma diagnostic and abundance analysis results obtained from CELs and from ORLs reproduce many of the patterns previously found for GDPNe. In particular we show that the large discrepancies between electron temperatures (Tes) derived from CELs and from ORLs appear to be mainly caused by abnormally low values yielded by recombination lines and/or continua. Similarly, the large discrepancies between heavy element abundances deduced from ORLs and from CELs are largely caused by abnormally high values obtained from ORLs, up to tens of solar in extreme cases. It appears that whatever mechanisms are causing the ubiquitous dichotomy between CELs and ORLs, their main effects are to enhance the emission of ORLs, but hardly affect that of CELs. It seems that heavy element abundances deduced from ORLs may not reflect the bulk composition of the nebula. Rather, our analysis suggests that ORLs of heavy element ions mainly originate from a previously unseen component of plasma of Tes of just a few hundred Kelvin, which is too cool to excite any optical and UV CELs.
Deep spectrophotometry has proved to be a fundamental tool to improve our knowledge on the chemical content of planetary nebulae. With the arrival of very efficient spectrographs installed in the largest ground-based telescopes, outstanding spectra h ave been obtained. These data are essential to constrain state-of-the-art nucleosynthesis models in asymptotic giant branch stars and, in general, to understand the chemical evolution of our Galaxy. In this paper we review the last advances on the chemical composition of the ionized gas in planetary nebulae based on faint emission lines observed through very deep spectrophotometric data.
297 - Y. G. Tsamis 2003
We present spectrophotometry of 12 Galactic and 3 Magellanic Cloud planetary nebulae (PNe). Nine of the Galactic PNe were observed by scanning the slit across the PN. We use the fluxes of collisionally excited lines (CELs) to derive electron densitie s (Ds) and temperatures (Ts), and ionic abundances. We find that the Ds derived from optical CEL ratios are systematically higher than those derived from the ratios of the IR fine-structure (FS) lines of [OIII], indicating the presence of significant density variations within the PNe. We also compare Ts obtained from the ratio of optical nebular to auroral [OIII] lines with those obtained from the ratio of [OIII] optical to IR FS lines. We find that when the latter are derived using Ds based on the [OIII] 52um/88um ratio, they yield values that are significantly higher than the optical [OIII] Ts. Contrasting this, [OIII] optical/IR Ts derived using the higher Ds obtained from [ClIII] 5517A/5537A ratios show much closer agreement with optical [OIII] Ts, implying that the observed [OIII] optical/IR ratios are significantly weighted by Ds in excess of the critical densities of both [OIII] FS lines. Consistent with this, ionic abundances derived from [OIII] and [NIII] FS lines using Ds from optical CELs show much better agreement with abundances derived for the same ions from optical and UV CELs than do abundances derived from the FS lines using the lower Ds obtained from the 52um/88um ratios. The behaviour of Ts obtained making use of the T-insensitive IR FS lines provides no support for significant T-fluctuations within the PNe that could be responsible for derived Balmer jump Ts being lower than those obtained from the much more T-sensitive [OIII] optical lines.
Measuring the chemical composition of galaxies is crucial to our understanding of galaxy formation and evolution models. However, such measurements are extremely challenging for quiescent galaxies at high redshifts, which have faint stellar continua and compact sizes, making it difficult to detect absorption lines and nearly impossible to spatially resolve them. Gravitational lensing offers the opportunity to study these galaxies with detailed spectroscopy that can be spatially resolved. In this work, we analyze deep spectra of MRG-M0138, a lensed quiescent galaxy at z = 1.98 which is the brightest of its kind, with an H-band magnitude of 17.1. Taking advantage of full spectral fitting, we measure $[{rm Mg/Fe}]=0.51pm0.05$, $[rm{Fe/H}]=0.26pm0.04$, and, for the first time, the stellar abundances of 6 other elements in this galaxy. We further constrained, also for the first time in a $zsim2$ galaxy, radial gradients in stellar age, [Fe/H], and [Mg/Fe]. We detect no gradient in age or [Mg/Fe] and a slightly negative gradient in [Fe/H], which has a slope comparable to that seen in local early-type galaxies. Our measurements show that not only is MRG-M0138 very Mg-enhanced compared to the centers of local massive early-type galaxies, it is also very iron rich. These dissimilar abundances suggest that even the inner regions of massive galaxies have experienced significant mixing of stars in mergers, in contrast to a purely inside-out growth model. The abundance pattern observed in MRG-M0138 challenges simple galactic chemical evolution models that vary only the star formation timescale and shows the need for more elaborate models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا