ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte Carlo Study of Detector Concepts for the MAX Laue Lens Gamma-Ray Telescope

95   0   0.0 ( 0 )
 نشر من قبل Georg Weidenspointner
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MAX is a proposed Laue lens gamma-ray telescope taking advantage of Bragg diffraction in crystals to concentrate incident photons onto a distant detector. The Laue lens and the detector are carried by two separate satellites flying in formation. Significant effort is being devoted to studying different types of crystals that may be suitable for focusing gamma rays in two 100 keV wide energy bands centered on two lines which constitute the prime astrophysical interest of the MAX mission: the 511 keV positron annihilation line, and the broadened 847 keV line from the decay of 56Co copiously produced in Type Ia supernovae. However, to optimize the performance of MAX, it is also necessary to optimize the detector used to collect the source photons concentrated by the lens. We address this need by applying proven Monte Carlo and event reconstruction packages to predict the performance of MAX for three different Ge detector concepts: a standard coaxial detector, a stack of segmented detectors, and a Compton camera consisting of a stack of strip detectors. Each of these exhibits distinct advantages and disadvantages regarding fundamental instrumental characteristics such as detection efficiency or background rejection, which ultimately determine achievable sensitivities. We conclude that the Compton camera is the most promising detector for MAX in particular, and for Laue lens gamma-ray telecopes in general.



قيم البحث

اقرأ أيضاً

The accuracy of Monte Carlo simulations in reproducing the scientific performance of space telescopes (e.g. angular resolution) is mandatory for a correct design of the mission. A brand-new Monte Carlo simulator of the Astrorivelatore Gamma ad Immagi ni LEggero (AGILE)/Gamma-Ray Imaging Detector (GRID) space telescope, AGILESim, is built using the customizable Bologna Geant4 Multi-Mission Simulator (BoGEMMS) architecture and the latest Geant4 library to reproduce the instrument performance of the AGILE/GRID instrument. The Monte Carlo simulation output is digitized in the BoGEMMS postprocessing pipeline, according to the instrument electronic read-out logic, then converted into the onboard data handling format, and finally analyzed by the standard mission on-ground reconstruction pipeline, including the Kalman filter, as a real observation in space. In this paper we focus on the scientific validation of AGILESim, performed by reproducing (i) the conversion efficiency of the tracker planes, (ii) the tracker charge readout distribution measured by the on-ground assembly, integration, and verification activity, and (iii) the point-spread function of in-flight observations of the Vela pulsar in the 100 MeV - 1 GeV energy range. We measure an in-flight angular resolution (FWHM) for Vela-like point sources of $2.0^{+0.2}_{-0.3}$ and $0.8^{+0.1}_{-0.1}$ degrees in the 100 - 300 and 300 - 1000 MeV energy bands, respectively. The successful cross-comparison of the simulation results with the AGILE on-ground and in-space performance validates the BoGEMMS framework for its application to future gamma-ray trackers (e.g. e-ASTROGAM and AMEGO).
72 - Ezio Caroli 2006
The energy range above 60 keV is important for the study of many open problems in high energy astrophysics such as the role of Inverse Compton with respect to synchrotron or thermal processes in GRBs, non thermal mechanisms in SNR, the study of the h igh energy cut-offs in AGN spectra, and the detection of nuclear and annihilation lines. Recently the development of high energy Laue lenses with broad energy bandpasses from 60 to 600 keV have been proposed for a Hard X ray focusing Telescope (HAXTEL) in order to study the X-ray continuum of celestial sources. The required focal plane detector should have high detection efficiency over the entire operative range, a spatial resolution of about 1 mm, an energy resolution of a few keV at 500 keV and a sensitivity to linear polarization. We describe a possible configuration of the focal plane detector based on several CdTe/CZT pixelated layers stacked together to achieve the required detection efficiency at high energy. Each layer can operate both as a separate position sensitive detector and polarimeter or work with other layers to increase the overall photopeak efficiency. Each layer has a hexagonal shape in order to minimize the detector surface required to cover the lens field of view. The pixels would have the same geometry so as to provide the best coupling with the lens point spread function and to increase the symmetry for polarimetric studies.
We report the status of the HAXTEL project, devoted to perform a design study and the development of a Laue lens prototype. After a summary of the major results of the design study, the approach adopted to develop a Demonstration Model of a Laue lens is discussed, the set up described, and some results presented.
The Cherenkov Telescope Array (CTA) represents the next generation of ground based instruments for Very High Energy gamma-ray astronomy. It is expected to improve on the sensitivity of current instruments by an order of magnitude and provide energy c overage from 20 GeV to more than 200 TeV. In order to achieve these ambitious goals Monte Carlo (MC) simulations play a crucial role, guiding the design of CTA. Here, results of the second large-scale MC production are reported, providing a realistic estimation of feasible array candidates for both Northern and Sourthern Hemisphere sites performance, placing CTA capabilities into the context of the current generation of High Energy $gamma$-ray detectors.
We have developed MGGPOD, a user-friendly suite of Monte Carlo codes built around the widely used GEANT (Version 3.21) package. The MGGPOD Monte Carlo suite and documentation are publicly available for download. MGGPOD is an ideal tool for supporting the various stages of gamma-ray astronomy missions, ranging from the design, development, and performance prediction through calibration and response generation to data reduction. In particular, MGGPOD is capable of simulating ab initio the physical processes relevant for the production of instrumental backgrounds. These include the build-up and delayed decay of radioactive isotopes as well as the prompt de-excitation of excited nuclei, both of which give rise to a plethora of instrumental gamma-ray background lines in addition to continuum backgrounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا