ترغب بنشر مسار تعليمي؟ اضغط هنا

AGILESim: Monte Carlo simulation of the AGILE gamma-ray telescope

199   0   0.0 ( 0 )
 نشر من قبل Valentina Fioretti
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The accuracy of Monte Carlo simulations in reproducing the scientific performance of space telescopes (e.g. angular resolution) is mandatory for a correct design of the mission. A brand-new Monte Carlo simulator of the Astrorivelatore Gamma ad Immagini LEggero (AGILE)/Gamma-Ray Imaging Detector (GRID) space telescope, AGILESim, is built using the customizable Bologna Geant4 Multi-Mission Simulator (BoGEMMS) architecture and the latest Geant4 library to reproduce the instrument performance of the AGILE/GRID instrument. The Monte Carlo simulation output is digitized in the BoGEMMS postprocessing pipeline, according to the instrument electronic read-out logic, then converted into the onboard data handling format, and finally analyzed by the standard mission on-ground reconstruction pipeline, including the Kalman filter, as a real observation in space. In this paper we focus on the scientific validation of AGILESim, performed by reproducing (i) the conversion efficiency of the tracker planes, (ii) the tracker charge readout distribution measured by the on-ground assembly, integration, and verification activity, and (iii) the point-spread function of in-flight observations of the Vela pulsar in the 100 MeV - 1 GeV energy range. We measure an in-flight angular resolution (FWHM) for Vela-like point sources of $2.0^{+0.2}_{-0.3}$ and $0.8^{+0.1}_{-0.1}$ degrees in the 100 - 300 and 300 - 1000 MeV energy bands, respectively. The successful cross-comparison of the simulation results with the AGILE on-ground and in-space performance validates the BoGEMMS framework for its application to future gamma-ray trackers (e.g. e-ASTROGAM and AMEGO).



قيم البحث

اقرأ أيضاً

Context: AGILE is a gamma-ray astrophysics mission which has been in orbit since 23 April 2007 and continues to operate reliably. The gamma-ray detector, AGILE-GRID, has observed Galactic and extragalactic sources, many of which were collected in the first AGILE Catalog. Aims: We present the calibration of the AGILE-GRID using in-flight data and Monte Carlo simulations, producing Instrument Response Functions (IRFs) for the effective area A_eff), Energy Dispersion Probability (EDP), and Point Spread Function (PSF), each as a function of incident direction in instrument coordinates and energy. Methods: We performed Monte Carlo simulations at different gamma-ray energies and incident angles, including background rejection filters and Kalman filter-based gamma-ray reconstruction. Long integrations of in-flight observations of the Vela, Crab and Geminga sources in broad and narrow energy bands were used to validate and improve the accuracy of the instrument response functions. Results: The weighted average PSFs as a function of spectra correspond well to the data for all sources and energy bands. Conclusions: Changes in the interpolation of the PSF from Monte Carlo data and in the procedure for construction of the energy-weighted effective areas have improved the correspondence between predicted and observed fluxes and spectra of celestial calibration sources, reducing false positives and obviating the need for post-hoc energy-dependent scaling factors. The new IRFs have been publicly available from the Agile Science Data Centre since November 25, 2011, while the changes in the analysis software will be distributed in an upcoming release.
AGILE is a mission of the Italian Space Agency (ASI) Scientific Program dedicated to gamma-ray astrophysics, operating in a low Earth orbit since April 23, 2007. It is designed to be a very light and compact instrument, capable of simultaneously dete cting and imaging photons in the 18 keV to 60 keV X-ray energy band and in the 30 MeV{50 GeV gamma-ray energy with a good angular resolution (< 1 deg at 1 GeV). The core of the instrument is the Silicon Tracker complemented with a CsI calorimeter and a AntiCoincidence system forming the Gamma Ray Imaging Detector (GRID). Before launch, the GRID needed on-ground calibration with a tagged gamma-ray beam to estimate its performance and validate the Monte Carlo simulation. The GRID was calibrated using a tagged gamma-ray beam with energy up to 500 MeV at the Beam Test Facilities at the INFN Laboratori Nazionali di Frascati. These data are used to validate a GEANT3 based simulation by comparing the data and the Monte Carlo simulation by measuring the angular and energy resolutions. The GRID angular and energy resolutions obtained using the beam agree well with the Monte Carlo simulation. Therefore the simulation can be used to simulate the same performance on-light with high reliability.
In recent years, a new generation of space missions offered great opportunities of discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) onboard the AGILE space mission. The AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many gamma-ray transients of galactic and extragalactic origins. This work presents the AGILE innovative approach to fast gamma-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe: (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for gamma-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, e-mails, and push notifications of an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in gamma-ray astrophysics.
252 - T. Jogler , M. D. Wood , J. Dumm 2013
The Cherenkov Telescope Array (CTA) is a future very high energy gamma-ray observatory. CTA will be comprised of small-,medium- and large-size telescopes covering an energy range from tens of GeV to hundreds of TeV and will surpass existing telescope s in sensitivity by an order of magnitude. The aim of our study is to find the optimal design for the medium-size telescopes (MSTs), which will determine the sensitivity in the key energy range between a few hundred GeV to about ten TeV. To study the effect of the telescope design parameters on the array performance, we simulated arrays of 61 MSTs with 120 m spacing and a variety of telescope configurations. We investigated the influence of the primary telescope characteristics including optical resolution, pixel size, and light collection area on the total array performance with a particular emphasis on telescope configurations with imaging performance similar to the proposed Davies-Cotton (DC) and Schwarzschild-Couder (SC) MST designs. We compare the performance of these telescope designs, especially the achieved gamma-ray angular resolution and differential point-source sensitivity. Finally we investigate the performance of different array sizes to demonstrate impacts of financial constraints on the number of telescopes.
127 - T. Jogler , M. D. Wood , J. Dumm 2012
The Cherenkov Telescope Array (CTA) is a future very high energy gamma-ray observatory. CTA will be comprised of small-, medium- and large-size telescopes covering an energy range from tens of GeV to hundreds of TeV and will surpass existing telescop es in sensitivity by an order of magnitude. The aim of our study is to find the optimal design for the medium-size telescopes (MSTs), which will determine the sensitivity in the key energy range between a few hundred GeV to about ten TeV. To study the effect of the telescope design parameters on the array performance, we simulated arrays of 61 MSTs with 120 m spacing and a variety of telescope configurations. We investigated the influence of the primary telescope characteristics including optical resolution, pixel size, and light collection area on the total array performance with a particular emphasis on telescope configurations with imaging performance similar to the proposed Davis-Cotton (DC) and Schwarzschild-Couder (SC) MST designs. We compare the performance of these telescope designs, especially the achieved gamma-ray angular resolution and differential point-source sensitivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا