ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the specific activity of Ar-39 in natural argon

109   0   0.0 ( 0 )
 نشر من قبل Luciano Pandola
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the measurement of the specific activity of Ar-39 in natural argon. The measurement was performed with a 2.3-liter two-phase (liquid and gas) argon drift chamber. The detector was developed by the WARP Collaboration as a prototype detector for WIMP Dark Matter searches with argon as a target. The detector was operated for more than two years at Laboratori Nazionali del Gran Sasso, Italy, at a depth of 3,400 m w.e. The specific activity measured for Ar-39 is 1.01 +/- 0.02(stat) +/- 0.08(syst) Bq per kg of natural Ar.



قيم البحث

اقرأ أيضاً

We have experimentally determined the production rate of $^{39}$Ar and $^{37}$Ar from cosmic ray neutron interactions in argon at sea level. Understanding these production rates is important for argon-based dark matter experiments that plan to utiliz e argon extracted from deep underground because it is imperative to know what the ingrowth of $^{39}$Ar will be during the production, transport, and storage of the underground argon. These measurements also allow for the prediction of $^{39}$Ar and $^{37}$Ar concentrations in the atmosphere which can be used to determine the presence of other sources of these isotopes. Through controlled irradiation with a neutron beam that mimics the cosmic ray neutron spectrum, followed by direct counting of $^{39}$Ar and $^{37}$Ar decays with sensitive ultra-low background proportional counters, we determined that the production rate from cosmic ray neutrons at sea-level is expected to be $(759 pm 128)$ atoms/kg$_text{Ar}$/day for $^{39}$Ar, and $(51.0 pm 7.4)$ atoms/kg$_text{Ar}$/day for $^{37}$Ar. We also performed a survey of the alternate production mechanisms based on the state-of-knowledge of the associated cross-sections to obtain a total sea-level cosmic ray production rate of $(1048 pm 133)$ atoms/kg$_text{Ar}$/day for $^{39}$Ar, $(56.7 pm 7.5)$ atoms/kg$_text{Ar}$/day for $^{37}$Ar in underground argon, and $(92 pm 13)$ atoms/kg$_text{Ar}$/day for $^{37}$Ar in atmospheric argon.
The DEAP-3600 detector searches for the scintillation signal from dark matter particles scattering on a 3.3 tonne liquid argon target. The largest background comes from $^{39}$Ar beta decays and is suppressed using pulseshape discrimination (PSD). We use two types of PSD algorithm: the prompt-fraction, which considers the fraction of the scintillation signal in a narrow and a wide time window around the event peak, and the log-likelihood-ratio, which compares the observed photon arrival times to a signal and a background model. We furthermore use two algorithms to determine the number of photons detected at a given time: (1) simply dividing the charge of each PMT pulse by the charge of a single photoelectron, and (2) a likelihood analysis that considers the probability to detect a certain number of photons at a given time, based on a model for the scintillation pulseshape and for afterpulsing in the light detectors. The prompt-fraction performs approximately as well as the log-likelihood-ratio PSD algorithm if the photon detection times are not biased by detector effects. We explain this result using a model for the information carried by scintillation photons as a function of the time when they are detected.
The Aria project consists of a plant, hosting a 350 m cryogenic isotopic distillation column, the tallest ever built, which is currently in the installation phase in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pil lars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. Aria was designed to reduce the isotopic abundance of $^{39}$Ar, a $beta$-emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors, in the argon used for the dark-matter searches, the so-called Underground Argon (UAr). In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of isotopic cryogenic distillation of nitrogen with a prototype plant, operating the column at total reflux.
The indication for the alpha decay of 180-W with a half-life T1/2=1.1+0.8-0.4(stat)+-0.3(syst)x10^18 yr has been observed for the first time with the help of the super-low background 116-CdWO_4 crystal scintillators. In conservative approach the lowe r limit on half-life of 180-W has been established as T1/2>0.7x10^18 yr at 90% C.L. Besides, new T1/2 bounds were set for alpha decay of 182-W, 183-W, 184-W and 186-W at the level of 10^20 yr.
We report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. Our results, which are consistent with previous measurements in the region between 100 to 350 V/cm [1] , are systematically higher than the prediction of Atrazhev-Timoshkin[2], and represent the worlds best measurement in the region between 350 to 2000 V/cm. The quantum efficiency of the gold photocathode, the drift velocity and longitudinal diffusion coefficients in gas argon are also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا