ترغب بنشر مسار تعليمي؟ اضغط هنا

HD molecule and search for early structure-formation signatures in the Universe

44   0   0.0 ( 0 )
 نشر من قبل Vladimir Avila-Reese
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Nunez-Lopez




اسأل ChatGPT حول البحث

Possible detection of signatures of structure formation at the end of the dark age epoch (z~40-20) is examined. We discuss the spectral-spatial fluctuations in the CMBR temperature produced by elastic resonant scattering of CMBR photons on HD molecules located in protostructures moving with peculiar velocity. Detailed chemical kinematic evolution of HD molecules in the expanding homogeneous medium is calculated. Then, the HD abundances are linked to protostructures at their maximum expansion, whose properties are estimated by using the top-hat spherical approach and the LambdaCDM cosmology. We find that the optical depths in the HD three lowest pure rotational lines for high-peak protohaloes at their maximum expansion are much higher than those in LiH molecule. The corresponding spectral-spatial fluctuation amplitudes however are probably too weak as to be detected by current and forthcoming millimeter-telescope facilities. We extend our estimates of spectral-spatial fluctuations to gas clouds inside collapsed CDM haloes by using results from a crude model of HD production in these clouds. The fluctuations for the highest-peak CDM haloes at redshifts ~20-30 could be detected in the future. Observations will be important to test model predictions of early structure formation in the universe.

قيم البحث

اقرأ أيضاً

Gravitational wave detection in space promises to open a new window in astronomy to study the strong field dynamics of gravitational physics in astrophysics and cosmology. The present article is an extract of a report on a feasibility study of gravit ational wave detection in space, commissioned by the National Space Science Center, Chinese Academy of Sciences almost a decade ago. The objective of the study was to explore various possible mission options to detect gravitational waves in space alternative to that of the (e)LISA mission concept and look into the requirements on the technological fronts. On the basis of relative merits and balance between science and technological feasibility, a set of representative mission options were studied and in the end a mission design was recommended as the starting point for research and development in the Chinese Academy of Sciences. The mission design was eventually adopted by the current TAIJI mission as the baseline parameters for the project. Subject to technological constraints, the baseline parameters of the TAIJI mission were designed in such a way to optimise the capability of a spaceborne gravitational wave detector to probe high redshift light seed, intermediate mass black holes and thereby shed important light on the structure formation in early Universe.
Solitons formation through classical dynamics of two scalar fields with the potential having a saddle point and one minimum in (2+1)-space-time is discussed. We show that under certain conditions in the early Universe both domain walls and strings ca n be formed even if scalar fields are inflaton ones.
212 - Bruce G. Elmegreen 2018
Young massive clusters (YMCs) are usually accompanied by lower-mass clusters and unbound stars with a total mass equal to several tens times the mass of the YMC. If this was also true when globular clusters (GCs) formed, then their cosmic density imp lies that most star formation before redshift ~2 made a GC that lasted until today. Star-forming regions had to change after this time for the modern universe to be making very few YMCs. Here we consider the conditions needed for the formation of a ~10^6 Msun cluster. These include a star formation rate inside each independent region that exceeds ~1 Msun/yr to sample the cluster mass function up to such a high mass, and a star formation rate per unit area of Sigma_SFR ~ 1 Msun/kpc^2/yr to get the required high gas surface density from the Kennicutt-Schmidt relation, and therefore the required high pressure from the weight of the gas. High pressures are implied by the virial theorem at cluster densities. The ratio of these two quantities gives the area of a GC-forming region, ~1 kpc^2, and the young stellar mass converted to a cloud mass gives the typical gas surface density of 500-1000 Msun/pc^2 Observations of star-forming clumps in young galaxies are consistent with these numbers, suggesting they formed todays GCs. Observations of the cluster cut-off mass in local galaxies agree with the maximum mass calculated from Sigma_SFR. Metal-poor stellar populations in local dwarf irregular galaxies confirm the dominant role of GC formation in building their young disks.
49 - U. Maio , K. Dolag , B. Ciardi 2007
Cooling is the main process leading to the condensation of gas in the dark matter potential wells and consequently to star and structure formation. In a metal-free environment, the main available coolants are H, He, H$_2$ and HD; once the gas is enri ched with metals, these also become important in defining the cooling properties of the gas. We discuss the implementation in Gadget-2 of molecular and metal cooling at temperatures lower that $rm10^4 K$, following the time dependent properties of the gas and pollution from stellar evolution. We have checked the validity of our scheme comparing the results of some test runs with previous calculations of cosmic abundance evolution and structure formation, finding excellent agreement. We have also investigated the relevance of molecule and metal cooling in some specific cases, finding that inclusion of HD cooling results in a higher clumping factor of the gas at high redshifts, while metal cooling at low temperatures can have a significant impact on the formation and evolution of cold objects.
165 - U. Maio , K. Dolag , B. Ciardi 2007
This submission has been withdrawn by arXiv administrators because it is a duplicate of 0704.2182.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا