ترغب بنشر مسار تعليمي؟ اضغط هنا

Two Thresholds for Globular Cluster Formation and their Dominance of Star Formation in the Early-Universe

213   0   0.0 ( 0 )
 نشر من قبل Bruce Elmegreen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Young massive clusters (YMCs) are usually accompanied by lower-mass clusters and unbound stars with a total mass equal to several tens times the mass of the YMC. If this was also true when globular clusters (GCs) formed, then their cosmic density implies that most star formation before redshift ~2 made a GC that lasted until today. Star-forming regions had to change after this time for the modern universe to be making very few YMCs. Here we consider the conditions needed for the formation of a ~10^6 Msun cluster. These include a star formation rate inside each independent region that exceeds ~1 Msun/yr to sample the cluster mass function up to such a high mass, and a star formation rate per unit area of Sigma_SFR ~ 1 Msun/kpc^2/yr to get the required high gas surface density from the Kennicutt-Schmidt relation, and therefore the required high pressure from the weight of the gas. High pressures are implied by the virial theorem at cluster densities. The ratio of these two quantities gives the area of a GC-forming region, ~1 kpc^2, and the young stellar mass converted to a cloud mass gives the typical gas surface density of 500-1000 Msun/pc^2 Observations of star-forming clumps in young galaxies are consistent with these numbers, suggesting they formed todays GCs. Observations of the cluster cut-off mass in local galaxies agree with the maximum mass calculated from Sigma_SFR. Metal-poor stellar populations in local dwarf irregular galaxies confirm the dominant role of GC formation in building their young disks.

قيم البحث

اقرأ أيضاً

We aim at understanding the massive star formation (MSF) limit $m(r) = 870 M_{odot} (r/pc)^{1.33}$ in the mass-size space of molecular structures recently proposed by Kauffmann & Pillai (2010). As a first step, we build on the hypothesis of a volume density threshold for overall star formation and the model of Parmentier (2011) to establish the mass-radius relations of molecular clumps containing given masses of star-forming gas. Specifically, we relate the mass $m_{clump}$, radius $r_{clump}$ and density profile slope $-p$ of molecular clumps which contain a mass $m_{th}$ of gas denser than a volume density threshold $rho_{th}$. In a second step, we use the relation between the mass of embedded-clusters and the mass of their most-massive star to estimate the minimum mass of star-forming gas needed to form a $10,M_{odot}$ star. Assuming a star formation efficiency of $SFE simeq 0.30$, this gives $m_{th,crit} simeq 150 M_{odot}$. In a third step, we demonstrate that, for sensible choices of the clump density index ($p simeq 1.7$) and of the cluster formation density threshold ($n_{th} simeq 10^4,cm^{-3}$), the line of constant $m_{th,crit} simeq 150 M_{odot}$ in the mass-radius space of molecular structures equates with the MSF limit for spatial scales larger than 0.3,pc. Hence, the observationally inferred MSF limit of Kauffmann & Pillai is consistent with a threshold in star-forming gas mass beyond which the star-forming gas reservoir is large enough to allow the formation of massive stars. For radii smaller than 0.3,pc, the MSF limit is shown to be consistent with the formation of a $10,M_{odot}$ star out of its individual pre-stellar core of density threshold $n_{th} simeq 10^5,cm^{-3}$. The inferred density thresholds for the formation of star clusters and individual stars within star clusters match those previously suggested in the literature.
Recent observations of ram pressure stripped spiral galaxies in clusters revealed details of the stripping process, i.e., the truncation of all interstellar medium (ISM) phases and of star formation (SF) in the disk, and multiphase star-forming tails . Some stripped galaxies, in particular in merging clusters, develop spectacular star-forming tails, giving them a jellyfish-like appearance. In merging clusters, merger shocks in the intra-cluster medium (ICM) are thought to have overrun these galaxies, enhancing the ambient ICM pressure and thus triggering SF, gas stripping and tail formation. We present idealised hydrodynamical simulations of this scenario, including standard descriptions for SF and stellar feedback. To aid the interpretation of recent and upcoming observations, we focus on particular structures and dynamics in SF patterns in the remaining gas disk and in the near tails, which are easiest to observe. The observed jellyfish morphology is qualitatively reproduced for, both, face-on and edge-on stripping. In edge-on stripping, the interplay between the ICM wind and the disk rotation leads to asymmetries along the ICM wind direction and perpendicular to it. The apparent tail is still part of a highly deformed gaseous and young stellar disk. In both geometries, SF takes place in knots throughout the tail, such that the stars in the tails show no ordered age gradients. Significant SF enhancement in the disk occurs only at radii where the gas will be stripped in due course.
Nuclear star clusters (NSCs) are the densest stellar systems in the Universe and are found in the centres of all types of galaxies. They are thought to form via mergers of star clusters such as ancient globular clusters (GCs) that spiral to the centr e as a result of dynamical friction or through in-situ star formation directly at the galaxy centre. There is evidence that both paths occur, but the relative contribution of either channel and their correlation with galaxy properties are not yet constrained observationally. We aim to derive the dominant NSC formation channel for a sample of 25 nucleated galaxies, mostly in the Fornax galaxy cluster, with stellar masses between $M_rm{gal} sim 10^8$ and $10^{10.5} M_odot$ and NSC masses between $M_rm{NSC} sim 10^5$ and $10^{8.5} M_odot$. Using Multi-Unit Spectroscopic Explorer (MUSE) data from the Fornax 3D survey and the ESO archive, we derive star formation histories, mean ages and metallicities of NSCs, and compare them to the host galaxies. In many low-mass galaxies, the NSCs are significantly more metal-poor than the hosts with properties similar to GCs. In contrast, in the massive galaxies, we find diverse star formation histories and cases of ongoing or recent in-situ star formation. Massive NSCs ($> 10^7 M_odot$) occupy a different region in the mass-metallicity diagram than lower mass NSCs and GCs, indicating a different enrichment history. We find a clear transition of the dominant NSC formation channel with both galaxy and NSC mass. We hypothesise that while GC-accretion forms the NSCs of the dwarf galaxies, central star formation is responsible for the efficient mass build up in the most massive NSCs in our sample. At intermediate masses, both channels can contribute. The transition between these formation channels seems to occur at galaxy masses $M_rm{gal} sim 10^9 M_odot$ and NSC masses $M_rm{NSC} sim 10^7 M_odot$.
267 - Guilaine Lagache 2018
In the last decade, it has become clear that the dust-enshrouded star formation contributes significantly to early galaxy evolution. Detection of dust is therefore essential in determining the properties of galaxies in the high-redshift universe. Thi s requires observations at the (sub-)millimeter wavelengths. Unfortunately, sensitivity and background confusion of single dish observations on the one hand, and mapping efficiency of interferometers on the other hand, pose unique challenges to observers. One promising route to overcome these difficulties is intensity mapping of fluctuations which exploits the confusion-limited regime and measures the collective light emission from all sources, including unresolved faint galaxies. We discuss in this contribution how 2D and 3D intensity mapping can measure the dusty star formation at high redshift, through the Cosmic Infrared Background (2D) and [CII] fine structure transition (3D) anisotropies.
We identify a total of 120 early-type Brightest Cluster Galaxies (BCGs) at 0.1<z<0.4 in two recent large cluster catalogues selected from the Sloan Digital Sky Survey (SDSS). They are selected with strong emission lines in their optical spectra, with both H{alpha} and [O II]{lambda}3727 line emission, which indicates significant ongoing star formation. They constitute about ~ 0.5% of the largest, optically-selected, low-redshift BCG sample, and the fraction is a strong function of cluster richness. Their star formation history can be well described by a recent minor and short starburst superimposed on an old stellar component, with the recent episode of star formation contributing on average only less than 1 percent of the total stellar mass. We show that the more massive star-forming BCGs in richer clusters tend to have higher star formation rate (SFR) and specific SFR (SFR per unit galaxy stellar mass). We also compare their statistical properties with a control sample selected from X-ray luminous clusters, and show that the fraction of star-forming BCGs in X-ray luminous clusters is almost one order of magnitude larger than that in optically-selected clusters. BCGs with star formation in cooling flow clusters usually have very flat optical spectra and show the most active star formation, which may be connected with cooling flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا