ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-infrared observations of water-ice in OH/IR stars

181   0   0.0 ( 0 )
 نشر من قبل Kay Justtanont
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A search for the near-infrared water-ice absorption band was made in a number of very red OH/IR stars which are known to exhibit the 10um silicate absorption. As a by-product, accurate positions of these highly reddened objects are obtained. We derived a dust mass loss rate for each object by modelling the spectral energy distribution and the gas mass loss rate by solving the equation of motion for the dust drag wind. The derived mass loss rates show a strong correlation with the silicate optical depth as well as that of the water-ice. The stars have a high mass loss rate (> 1.0E-4 Msun/yr) with an average gas-to-dust mass ratio of 110. In objects which show the 3.1um water-ice absorption, the near-IR slope is much steeper than those with no water-ice. Comparison between our calculated mass loss rates and those derived from OH and CO observations indicates that these stars have recently increased their mass loss rates.

قيم البحث

اقرأ أيضاً

110 - Takafumi Kamizuka 2020
Non-variable OH/IR stars are thought to have just left the asymptotic giant branch (AGB) phase. In this conventional picture, they must still show strong circumstellar extinction caused by the dust ejected during the AGB phase, and the extinction is expected to decrease over time because of the dispersal of the circumstellar dust after the cessation of the stellar mass loss. The reduction of the extinction makes the stars become apparently brighter and bluer with time especially in the near-infrared (NIR) range. We look for such long-term brightening of non-variable OH/IR stars by using 2MASS, UKIDSS, and OAOWFC survey data. As a result, we get multi-epoch NIR data taken over a 20-year period (1997-2017) for 6 of 16 non-variable OH/IR stars, and all six objects are found to be brightening. The K-band brightening rate of five objects ranges from 0.010 to 0.130 mag yr$^{-1}$, which is reasonably explained with the conventional picture. However, one OH/IR star, OH31.0-0.2, shows a rapid brightening, which cannot be explained only by the dispersal of the dust shell. Multi-color (J-, H-, and K-band) data are obtained for three objects, OH25.1-0.3, OH53.6-0.2, and OH77.9+0.2. Surprisingly, none of them appears to have become bluer, and OH53.6-0.2 is found to have been reddened with a rate of 0.013 mag yr$^{-1}$ in (J-K). Our findings suggest other mechanisms such as rapid changes in stellar properties (temperature or luminosity) or a generation of a new batch of dust grains.
Observations of high-excitation molecular emission lines can greatly increase our understanding of AGB winds, as they trace the innermost regions of the circumstellar envelope. The PACS spectrometer on-board the Herschel Space Telescope, provides for the first time the spectral resolution and sensitivity necessary to trace these lines. We report on the first modelling efforts of a PACS spectral scan for the OH/IR star V669 Cas. Central to our methodology is the consistent treatment of both dust and gas by using a line radiative transfer and a continuum radiative transfer code conjointly. Water emission lines are found to be extremely sensitive to the dust-to-gas ratio, emphasizing the need of consistent modelling for dust and gas.
63 - D. Riechers 2004
We present near-infrared speckle interferometry of the OH/IR star OH 104.9+2.4 in the K band obtained with the 6m telescope of the Special Astrophysical Observatory (SAO). At a wavelength of lambda = 2.12 micron the diffraction-limited resolution of 74 mas was attained. The reconstructed visibility reveals a spherically symmetric, circumstellar dust shell (CDS) surrounding the central star. The visibility function shows that the stellar contribution to the total flux at lambda = 2.12 micron is less than ~50%, indicating a rather large optical depth of the CDS. The azimuthally averaged 1-dimensional Gaussian visibility fit yields a diameter of 47 +/- 3mas (FHWM), which corresponds to 112 +/- 13 AU for an adopted distance of D = 2.38 +/- 0.24 kpc. To determine the structure and the properties of the CDS of OH 104.9+2.4, radiative transfer calculations using the code DUSTY were performed to simultaneously model its visibility and the spectral energy distribution (SED). We found that both the ISO spectrum and the visibility of OH 104.9+2.4 can be well reproduced by a radiative transfer model with an effective temperature T_eff = 2500 +/- 500 K of the central source, a dust temperature T_in = 1000 +/- 200 K at the inner shell boundary R_in = 9.1 R_star = 25.4 AU, an optical depth tau = 6.5 +/- 0.3 at 2.2 micron, and dust grain radii ranging from a_min = 0.005 +/- 0.003 micron to a_max = 0.2 +/- 0.02 micron with a power law with index -3.5. It was found that even minor changes in a_max have a major impact on both the slope and the curvature of the visibility function, while the SED shows only minor changes. Our detailed analysis demonstrates the potential of dust shell modeling constrained by both the SED and visibilities.
This paper investigates how the far-IR water ice features can be used to infer properties of disks around T Tauri stars and the water ice thermal history. We explore the power of future observations with SOFIA/HIRMES and SPICAs proposed far-IR instru ment SAFARI. A series of detailed radiative transfer disk models around a representative T Tauri star are used to investigate how the far-IR water ice features at 45 and 63 micron change with key disk properties: disk size, grain sizes, disk dust mass, dust settling, and ice thickness. In addition, a series of models is devised to calculate the water ice emission features from warmup, direct deposit and cooldown scenarios of the water ice in disks. Photodesorption from icy grains in disk surfaces weakens the mid-IR water ice features by factors 4-5. The far-IR water ice emission features originate from small grains at the surface snow line in disks at distance of 10-100 au. Unless this reservoir is missing in disks (e.g. transitional disks with large cavities), the feature strength is not changing. Grains larger than 10 micron do not contribute to the features. Grain settling (using turbulent description) is affecting the strength of the ice features by at most 15%. The strength of the ice feature scales with the disk dust mass and water ice fraction on the grains, but saturates for dust masses larger than 1.e-4 Msun and for ice mantles that increase the dust mass by more than 50%. The various thermal histories of water ice leave an imprint on the shape of the features (crystalline/amorphous) as well as on the peak strength and position of the 45 micron feature. SOFIA/HIRMES can only detect crystalline ice features much stronger than simulated in our standard T Tauri disk model in deep exposures (1 hr). SPICA/SAFARI can detect the typical ice features in our standard T Tauri disk model in short exposures (10 min). (abbreviated)
We present results on a search for 86.243 GHz SiO (J = 2 -- 1, v = 1) maser emission toward 67 OH/IR stars located near the Galactic Centre. We detected 32 spectral peaks, of which 28 correspond to SiO maser lines arising from the envelopes of these OH/IR stars. In OH/IR stars, we obtained an SiO maser detection rate of about 40%. We serendipitously detected two other lines from OH/IR stars at 86.18 GHz, which could be due to a CCS-molecule transition at 86.181 GHz or probably to an highly excited OH molecular transition at 86.178 GHz. The detection rate of 86 GHz maser emission is found to be about 60% for sources with The Midcourse Space Experiment (MSX) A - E < 2.5 mag; but it drops to 25% for the reddest OH/IR stars with MSX A - E > 2.5 mag. This supports the hypothesis by Messineo et al. (2002) that the SiO masers are primarily found in relatively thinner circumstellar material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا