ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of Magnetic Fields and Relativistic Beaming in Four Quasar Jets

54   0   0.0 ( 0 )
 نشر من قبل Daniel A. Schwartz
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D.A. Schwartz




اسأل ChatGPT حول البحث

We discuss the physical properties of four quasar jets imaged with the Chandra X-ray Observatory in the course of a survey for X-ray emission from radio jets. These objects have sufficient counts to study their spatially resolved properties, even in the 5 ks survey observations. We have acquired Australia Telescope Compact Array data with resolution matching Chandra. We have searched for optical emission with Magellan, with sub-arcsecond resolution. The radio to X-ray spectral energy distribution for most of the individual regions indicates against synchrotron radiation from a single-component electron spectrum. We therefore explore the consequences of assuming that the X-ray emission is the result of inverse Compton scattering on the cosmic microwave background. If particles and magnetic fields are near minimum energy density in the jet rest frames, then the emitting regions must be relativistically beamed, even at distances of order 500 kpc from the quasar. We estimate the magnetic field strengths, relativistic Doppler factors, and kinetic energy flux as a function of distance from the quasar core for two or three distinct regions along each jet. We develop, for the first time, estimates in the uncertainties in these parameters, recognizing that they are dominated by our assumptions in applying the standard synchrotron minimum energy conditions. The kinetic power is comparable with, or exceeds, the quasar radiative luminosity, implying that the jets are a significant factor in the energetics of the accretion process powering the central black hole. The measured radiative efficiencies of the jets are of order 10^(-4).



قيم البحث

اقرأ أيضاً

Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we have investigated long-term particle acceleration associated with an relativistic electron-positron jet propagating in an unmagnetized ambient electron-posi tron plasma. The simulations have been performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. The acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to the afterglow emission. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique.
Rapid gamma-ray flares pose an astrophysical puzzle, requiring mechanisms both to accelerate energetic particles and to produce fast observed variability. These dual requirements may be satisfied by collisionless relativistic magnetic reconnection. O n the one hand, relativistic reconnection can energize gamma-ray emitting electrons. On the other, as previous kinetic simulations have shown, the reconnection acceleration mechanism preferentially focuses high-energy particles -- and their emitted photons -- into beams, which may create rapid blips in flux as they cross a telescopes line of sight. Using a series of 2D pair-plasma particle-in-cell simulations, we explicitly demonstrate the critical role played by radiative cooling in mediating the observable signatures of this `kinetic beaming effect. Only in our efficiently cooled simulations do we measure kinetic beaming beyond one light crossing time of the reconnection layer. We find a correlation between the cooling strength and the photon energy range across which persistent kinetic beaming occurs: stronger cooling coincides with a wider range of beamed photon energies. We also apply our results to rapid gamma-ray flares in flat-spectrum radio quasars, suggesting that a paradigm of radiatively efficient kinetic beaming constrains relevant emission models. In particular, beaming-produced variability may be more easily realized in two-zone (e.g. spine-sheath) set-ups, with Compton seed photons originating in the jet itself, rather than in one-zone external Compton scenarios.
In the study of relativistic jets one of the key open questions is their interaction with the environment on the microscopic level. Here, we study the initial evolution of both electron$-$proton ($e^{-}-p^{+}$) and electron$-$positron ($e^{pm}$) rela tivistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of global jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI). In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the $e^{-}-p^{+}$ jet simulation a recollimation-like instability occurs and jet electrons are strongly perturbed. In the $e^{pm}$ jet simulation a recollimation-like instability occurs at early times followed by a kinetic instability and the general structure is similar to a simulation without helical magnetic field. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields.
We study the interaction of relativistic jets with their environment, using 3-dimensional relativistic particle-in-cell simulations for two cases of jet composition: (i) electron-proton ($e^{-}-p^{+}$) and (ii) electron-positron ($e^{pm}$) plasmas co ntaining helical magnetic fields. We have performed simulations of global jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability and the Mushroom instability. We have found that these kinetic instabilities are suppressed and new types of instabilities can grow. For the $e^{-}-p^{+}$ jet, a recollimation-like instability occurs and jet electrons are strongly perturbed, whereas for the $e^{pm}$ jet, a recollimation-like instability occurs at early times followed by kinetic instability and the general structure is similar to a simulation without a helical magnetic field. We plan to perform further simulations using much larger systems to confirm these new findings.
Using the relativistic MHD code MPI-AMRVAC and a radiative transfer code in post-processing, we explore the influence of the magnetic-field configuration and transverse stratification of an over-pressured jet on its morphology, on the moving shock dy namics, and on the emitted radio light curve. First, we investigate different large-scale magnetic fields with their effects on the standing shocks and on the stratified jet morphology. Secondly, we study the interaction of a moving shock wave with the standing shocks. We calculate the synthetic synchrotron maps and radio light curves and analyse the variability at two frequencies 1 and 15.3 GHz and for several observation angles. Finally, we compare the characteristics of our simulated light curves with radio flares observed from the blazar 3C 273 with OVRO and VLBA in the MOJAVE survey between 2008 and 2019. We find that, in a structured, over-pressured relativistic jet, the presence of the large-scale magnetic field structure changes the properties of the standing shock waves and leads to an opening of the jet. When crossing such standing shocks, moving shock waves accompanying overdensities injected in the base of the jet are causing very luminous radio flares. The observation of the temporal structure of these flares under different viewing angles probes the jet at different optical depths. At 1 GHz and for small angles, the self-absorption caused by the moving shock wave becomes more important and leads to a drop in the observed flux after it interacts with the brightest standing knot. A weak asymmetry is seen in the shape of the simulated flares, resulting from the remnant emission of the shocked standing shocks. The characteristics of the simulated flares and the correlation of peaks in the light curve with the crossing of moving and standing shocks favor this scenario as an explanation of the observed radio flares of 3C 273.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا