ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic Beaming in Radiative Relativistic Magnetic Reconnection: A Mechanism for Rapid Gamma-Ray Flares in Jets

217   0   0.0 ( 0 )
 نشر من قبل John Mehlhaff
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rapid gamma-ray flares pose an astrophysical puzzle, requiring mechanisms both to accelerate energetic particles and to produce fast observed variability. These dual requirements may be satisfied by collisionless relativistic magnetic reconnection. On the one hand, relativistic reconnection can energize gamma-ray emitting electrons. On the other, as previous kinetic simulations have shown, the reconnection acceleration mechanism preferentially focuses high-energy particles -- and their emitted photons -- into beams, which may create rapid blips in flux as they cross a telescopes line of sight. Using a series of 2D pair-plasma particle-in-cell simulations, we explicitly demonstrate the critical role played by radiative cooling in mediating the observable signatures of this `kinetic beaming effect. Only in our efficiently cooled simulations do we measure kinetic beaming beyond one light crossing time of the reconnection layer. We find a correlation between the cooling strength and the photon energy range across which persistent kinetic beaming occurs: stronger cooling coincides with a wider range of beamed photon energies. We also apply our results to rapid gamma-ray flares in flat-spectrum radio quasars, suggesting that a paradigm of radiatively efficient kinetic beaming constrains relevant emission models. In particular, beaming-produced variability may be more easily realized in two-zone (e.g. spine-sheath) set-ups, with Compton seed photons originating in the jet itself, rather than in one-zone external Compton scenarios.



قيم البحث

اقرأ أيضاً

The Crab Nebula was formed after the collapse of a massive star about a thousand years ago, leaving behind a pulsar that inflates a bubble of ultra-relativistic electron-positron pairs permeated with magnetic field. The observation of brief but brigh t flares of energetic gamma rays suggests that pairs are accelerated to PeV energies within a few days; such rapid acceleration cannot be driven by shocks. Here, it is argued that the flares may be the smoking gun of magnetic dissipation in the Nebula. Using 2D and 3D particle-in-cell simulations, it is shown that the observations are consistent with relativistic magnetic reconnection, where pairs are subject to strong radiative cooling. The Crab flares may highlight the importance of relativistic magnetic reconnection in astrophysical sources.
Cosmic sources of gamma-ray radiation in the GeV range are often characterized by violent variability, in particular this concerns blazars, gamma-ray bursts, and the pulsar wind nebula Crab. Such gamma-ray emission requires a very efficient particle acceleration mechanism. If the environment, in which such emission is produced, is relativistically magnetized (i.e., that magnetic energy density dominates even the rest-mass energy density of matter), then the most natural mechanism of energy dissipation and particle acceleration is relativistic magnetic reconnection. Basic research into this mechanism is performed by means of kinetic numerical simulations of various configurations of collisionless relativistic plasma with the use of the particle-in-cell algorithm. Such technique allows to investigate the details of particle acceleration mechanism, including radiative energy losses, and to calculate the temporal, spatial, spectral and angular distributions of synchrotron and inverse Compton radiation. The results of these simulations indicate that the effective variability time scale of the observed radiation can be much shorter than the light-crossing time scale of the simulated domain.
90 - Maxim Lyutikov 2016
We develop a model of particle acceleration in explosive reconnection events in relativistic magnetically-dominated plasmas and apply it to explain gamma-ray flares from the Crab Nebula. The model relies on development of current-driven instabilities on macroscopic scales (not related to plasma skin depths). Using analytical and numerical methods (fluid and particle-in-cell simulations), we study a number of model problems in relativistic magnetically-dominated plasma: (i) we extend Syrovatskys classical model of explosive X-point collapse to magnetically-dominated plasmas; (ii) we consider instability of two-dimensional force-free system of magnetic flux tubes; (iii) we consider merger of two zero total poloidal current magnetic flux tubes. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization. The X-point collapse stage is followed by magnetic island merger that dissipates a large fraction of the initial magnetic energy in a regime of forced reconnection, further accelerating the particles, but proceeds at a slower reconnection rate. Crab flares result from the initial explosive stages of magnetic island mergers of magnetic flux tubes produced in the bulk of nebula at intermediate polar regions. The post-termination shock plasma flow in the wind sectors with mild magnetization naturally generates large-scale highly magnetized structures. Internal kink-like instabilities lead to the formation of macroscopic current-carrying magnetic flux tubes that merge explosively.
102 - Maxim Lyutikov 2018
We develop a model of gamma-ray flares of the Crab Nebula resulting from the magnetic reconnection events in highly-magnetized relativistic plasma. We first discuss physical parameters of the Crab nebula and review the theory of pulsar winds and term ination shocks. We also review the principle points of particle acceleration in explosive reconnection events (Lyutikov et al. 2017a,b). It is required that particles producing flares are accelerated in highly magnetized regions of the nebula. Flares originate from the poleward regions at the base of Crabs polar outflow, where both the magnetization and the magnetic field strength are sufficiently high. The post-termination shock flow develops macroscopic (not related to the plasma properties on the skin-depth scale) kink-type instabilities. The resulting large-scales magnetic stresses drive explosive reconnection events on the light-crossing time of the reconnection region. Flares are produced at the initial stage of the current sheet development, during the X-point collapse. The model has all the ingredients needed for Crab flares: natural formation of highly magnetized regions, explosive dynamics on light travel time, development of high electric fields on macroscopic scales and acceleration of particles to energies well exceeding the average magnetic energy per particle.
The recent discovery of day-long gamma-ray flares in the Crab Nebula, presumed to be synchrotron emission by PeV (10^{15} eV) electrons in milligauss magnetic fields, presents a strong challenge to particle acceleration models. The observed photon en ergies exceed the upper limit (~100 MeV) obtained by balancing the acceleration rate and synchrotron radiation losses under standard conditions where the electric field is smaller than the magnetic field. We argue that a linear electric accelerator, operating at magnetic reconnection sites, is able to circumvent this difficulty. Sufficiently energetic electrons have gyroradii so large that their motion is insensitive to small-scale turbulent structures in the reconnection layer and is controlled only by large-scale fields. We show that such particles are guided into the reconnection layer by the reversing magnetic field as they are accelerated by the reconnection electric field. As these electrons become confined within the current sheet, they experience a decreasing perpendicular magnetic field that may drop below the accelerating electric field. This enables them to reach higher energies before suffering radiation losses and hence to emit synchrotron radiation in excess of the 100 MeV limit, providing a natural resolution to the Crab gamma-ray flare paradox.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا