ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Gravitating Phase Transitions: Point Particles, Black Holes and Strings

52   0   0.0 ( 0 )
 نشر من قبل Norma Sanchez
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Norma G. Sanchez




اسأل ChatGPT حول البحث

We compute the quantum string entropy S_s(m,j) of the microscopic string states of mass m and spin j in two physically relevant backgrounds: Kerr (rotating) black holes and de Sitter (dS) space-time. We find a new formula for the quantum gravitational entropy S_{sem} (M, J), as a function of the usual Bekenstein-Hawking entropy S_{sem}^(0)(M, J). We compute the quantum string emission by a black hole in de Sitter space-time (bhdS). In all these cases: (i) strings with the highest spin, and (ii) in dS space-time, (iii) quantum rotating black holes, (iv) quantum dS regime, (v) late bhdS evaporation, we find a new gravitational phase transition with a common distinctive universal feature: A square root branch point singularity in any space-time dimensions. This is the same behavior as for the thermal self-gravitating gas of point particles (de Vega-Sanchez transition), thus describing a new universality class.



قيم البحث

اقرأ أيضاً

59 - N. Caporaso 2005
The counting of microstates of BPS black-holes on local Calabi-Yau of the form ${mathcal O}(p-2)oplus{mathcal O}(-p) longrightarrow S^2$ is explored by computing the partition function of q-deformed Yang-Mills theory on $S^2$. We obtain, at finite $N $, the instanton expansion of the gauge theory. It can be written exactly as the partition function for U(N) Chern-Simons gauge theory on a Lens space, summed over all non-trivial vacua, plus a tower of non-perturbative instanton contributions. In the large $N$ limit we find a peculiar phase structure in the model. At weak string coupling the theory reduces to the trivial sector and the topological string partition function on the resolved conifold is reproduced in this regime. At a certain critical point, instantons are enhanced and the theory undergoes a phase transition into a strong coupling regime. The transition from the strong coupling phase to the weak coupling phase is of third order.
Both cosmological expansion and black holes are ubiquitous features of our observable Universe, yet exact solutions connecting the two have remained elusive. To this end, we study self-gravitating classical fields within dynamical spherically symmetr ic solutions that can describe black holes in an expanding universe. After attempting a perturbative approach of a known black-hole solution with scalar hair, we show by exact methods that the unique scalar field action with first-order derivatives that can source shear-free expansion around a black hole requires noncanonical kinetic terms. The resulting action is an incompressible limit of k-essence, otherwise known as the cuscuton theory, and the spacetime it describes is the McVittie metric. We further show that this solution is an exact solution to the vacuum Hov{r}ava-Lifshitz gravity with anisotropic Weyl symmetry.
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growi ng simplicial 2-complexes, i.e. simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a non-equilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped respectively to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks including small-world property, high clustering coefficient, high modularity, scale-free degree distribution.Moreover they can be distinguished between the Fermi-Dirac Network and the Bose-Einstein Network obeying respectively the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally we comment on the relation between Quantum Complex Network Geometries, spin networks and triangulations.
We study field theoretical models for cosmic strings with flat directions in curved space-time. More precisely, we consider minimal models with semilocal, axionic and tachyonic strings, respectively. In flat space-time, the string solutions of these models have a flat direction, i.e., a uniparametric family of configurations with the same energy exists which is associated to a zero mode. We prove that the zero mode survives coupling to gravity, and study the role of the flat direction when coupling the strings to gravity. Even though the total energy of the solution is the same, and thus the global properties of the family of solutions remains unchanged, the energy density, and therefore the gravitational properties, are different. The local structure of the solutions depends strongly on the value of the parameter describing the flat direction; for example, for supermassive strings, the value of the free parameter can determine the size of the universe.
In this work we study a homogeneous and quasilocal Thermodynamics associated to the Schwarzschild-anti de Sitter black hole. The usual thermodynamic description is extended within a Hamiltonian approach with the introduction of the cosmological const ant in the thermodynamic phase space. The treatment presented is consistent in as much as it respects the laws of black hole Thermodynamics and accepts the introduction of any thermodynamic potential. We are able to construct new equations of state that characterize the Thermodynamics. Novel phenomena can be expected from the proposed setup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا