ترغب بنشر مسار تعليمي؟ اضغط هنا

Complex Quantum Network Geometries: Evolution and Phase Transitions

122   0   0.0 ( 0 )
 نشر من قبل Ginestra Bianconi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Networks are topological and geometric structures used to describe systems as different as the Internet, the brain or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e. simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a non-equilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped respectively to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks including small-world property, high clustering coefficient, high modularity, scale-free degree distribution.Moreover they can be distinguished between the Fermi-Dirac Network and the Bose-Einstein Network obeying respectively the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally we comment on the relation between Quantum Complex Network Geometries, spin networks and triangulations.



قيم البحث

اقرأ أيضاً

Inverse phase transitions are striking phenomena in which an apparently more ordered state disorders under cooling. This behavior can naturally emerge in tricritical systems on heterogeneous networks and it is strongly enhanced by the presence of dis assortative degree correlations. We show it both analytically and numerically, providing also a microscopic interpretation of inverse transitions in terms of freezing of sparse subgraphs and coupling renormalization.
We consider the problem of coloring the vertices of a large sparse random graph with a given number of colors so that no adjacent vertices have the same color. Using the cavity method, we present a detailed and systematic analytical study of the spac e of proper colorings (solutions). We show that for a fixed number of colors and as the average vertex degree (number of constraints) increases, the set of solutions undergoes several phase transitions similar to those observed in the mean field theory of glasses. First, at the clustering transition, the entropically dominant part of the phase space decomposes into an exponential number of pure states so that beyond this transition a uniform sampling of solutions becomes hard. Afterward, the space of solutions condenses over a finite number of the largest states and consequently the total entropy of solutions becomes smaller than the annealed one. Another transition takes place when in all the entropically dominant states a finite fraction of nodes freezes so that each of these nodes is allowed a single color in all the solutions inside the state. Eventually, above the coloring threshold, no more solutions are available. We compute all the critical connectivities for Erdos-Renyi and regular random graphs and determine their asymptotic values for large number of colors. Finally, we discuss the algorithmic consequences of our findings. We argue that the onset of computational hardness is not associated with the clustering transition and we suggest instead that the freezing transition might be the relevant phenomenon. We also discuss the performance of a simple local Walk-COL algorithm and of the belief propagation algorithm in the light of our results.
We investigate the geometric properties of loops on two-dimensional lattice graphs, where edge weights are drawn from a distribution that allows for positive and negative weights. We are interested in the appearance of spanning loops of total negativ e weight. The resulting percolation problem is fundamentally different from conventional percolation, as we have seen in a previous study of this model for the undiluted case. Here, we investigate how the percolation transition is affected by additional dilution. We consider two types of dilution: either a certain fraction of edges exhibit zero weight, or a fraction of edges is even absent. We study these systems numerically using exact combinatorial optimization techniques based on suitable transformations of the graphs and applying matching algorithms. We perform a finite-size scaling analysis to obtain the phase diagram and determine the critical properties of the phase boundary. We find that the first type of dilution does not change the universality class compared to the undiluted case whereas the second type of dilution leads to a change of the universality class.
We study in this paper the structure of solutions in the random hypergraph coloring problem and the phase transitions they undergo when the density of constraints is varied. Hypergraph coloring is a constraint satisfaction problem where each constrai nt includes $K$ variables that must be assigned one out of $q$ colors in such a way that there are no monochromatic constraints, i.e. there are at least two distinct colors in the set of variables belonging to every constraint. This problem generalizes naturally coloring of random graphs ($K=2$) and bicoloring of random hypergraphs ($q=2$), both of which were extensively studied in past works. The study of random hypergraph coloring gives us access to a case where both the size $q$ of the domain of the variables and the arity $K$ of the constraints can be varied at will. Our work provides explicit values and predictions for a number of phase transitions that were discovered in other constraint satisfaction problems but never evaluated before in hypergraph coloring. Among other cases we revisit the hypergraph bicoloring problem ($q=2$) where we find that for $K=3$ and $K=4$ the colorability threshold is not given by the one-step-replica-symmetry-breaking analysis as the latter is unstable towards more levels of replica symmetry breaking. We also unveil and discuss the coexistence of two different 1RSB solutions in the case of $q=2$, $K ge 4$. Finally we present asymptotic expansions for the density of constraints at which various phase transitions occur, in the limit where $q$ and/or $K$ diverge.
Quantum phase transitions are usually observed in ground states of correlated systems. Remarkably, eigenstate phase transitions can also occur at finite energy density in disordered, isolated quantum systems. Such transitions fall outside the framewo rk of statistical mechanics as they involve the breakdown of ergodicity. Here, we consider what general constraints can be imposed on the nature of eigenstate transitions due to the presence of disorder. We derive Harris-type bounds on the finite-size scaling exponents of the mean entanglement entropy and level statistics at the many-body localization phase transition using several different arguments. Our results are at odds with recent small-size numerics, for which we estimate the crossover scales beyond which the Harris bound must hold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا