ترغب بنشر مسار تعليمي؟ اضغط هنا

Linked evolution of gas and star formation in galaxies over cosmic history

456   0   0.0 ( 0 )
 نشر من قبل Andrew Hopkins
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare the cosmic evolution of star formation rates in galaxies with that of their neutral hydrogen densities. We highlight the need for neutral hydrogen to be continually replenished from a reservoir of ionized gas to maintain the observed star formation rates in galaxies. Hydrodynamic simulations indicate that the replenishment may occur naturally through gas infall, although measured rates of gas infall in nearby galaxies are insufficient to match consumption. We identify an alternative mechanism for this replenishment, associated with expanding supershells within galaxies. Pre-existing ionized gas can cool and recombine efficiently in the walls of supershells, molecular gas can form in situ in shell walls, and shells can compress pre-existing molecular clouds to trigger collapse and star formation. We show that this mechanism provides replenishment rates sufficient to maintain both the observed HI mass density and the inferred molecular gas mass density over the redshift range 0<z<5.

قيم البحث

اقرأ أيضاً

Theory predicts that cosmological gas accretion plays a fundamental role fuelling star formation in galaxies. However, a detailed description of the accretion process to be used when interpreting observations is still lacking. Using the state-of-the- art cosmological hydrodynamical simulation eagle, we work out the chemical inhomogeneities arising in the disk of galaxies due to the randomness of the accretion process. In low-mass systems and outskirts of massive galaxies, low metallicity regions are associated with enhanced star-formation, a trend that reverses in the centers of massive galaxies. These predictions agree with the relation between surface density of star formation rate and metallicity observed in the local spiral galaxies from the MaNGA survey. Then, we analyse the origin of the gas that produces stars at two key epochs, z simeq 0 and z simeq 2. The main contribution comes from gas already in the galaxy about 1 Gyr before stars are formed, with a share from external gas that is larger at high redshift. The accreted gas may come from major and minor mergers, but also as gravitationally unbound gas and from mergers with dark galaxies (i.e., haloes where more than 95 % of the baryon mass is in gas). We give the relative contribution of these sources of gas as a function of stellar mass (8 < log Mstar < 11). Even at z = 0, some low-mass galaxies form a significant fraction of their total stellar mass during the last Gyr from mergers with dark galaxies.
We investigate the influence of the initial proto-galaxies over-densities and masses on their evolution, to understand whether the internal properties of the proto-galactic haloes are sufficient to account for the varied properties of the galactic po pulations. By means of fully hydrodynamical N-body simulations performed with the code EvoL we produce twelve self-similar models of early-type galaxies of different initial masses and over-densities, following their evolution from z geq 20 down to z leq 1. The simulations include radiative cooling, star formation, stellar energy feedback, a reionizing photoheating background, and chemical enrichment of the ISM. We find a strong correlation between the initial properties of the proto-haloes and their star formation histories. Massive (10^13Modot) haloes experience a single, intense burst of star formation (with rates geq 10^3Modot/yr) at early epochs, consistently with observations, with a less pronounced dependence on the initial over-density; intermediate mass (10^11Modot) haloes histories strongly depend on their initial over-density, whereas small (10^9Modot) haloes always have fragmented histories, resulting in multiple stellar populations, due to the galactic breathing phenomenon. The galaxy models have morphological, structural and photometric properties comparable to real galaxies, often closely matching the observed data; even though some disagreement is still there, likely a consequence of some numerical choices. We conclude that internal properties are essentially sufficient to explain many of the observed features of early type galaxies, particularly the complicated and different star formation histories shown by haloes of very different mass. In this picture, nature seems to play the dominant role, whereas nurture has a secondary importance.
83 - S. J. Curran 2019
There is a well known disparity between the evolution the star formation rate density, {psi}*, and the abundance of neutral hydrogen (HI), the raw material for star formation. Recently, however, we have shown that {psi}* may be correlated with the fr action of cool atomic gas, as traced through the 21-cm absorption of HI. This is expected since star formation requires cold (T ~ 10 K) gas and so this could address the issue of why the star formation rate density does not trace the bulk atomic gas. The data are, however, limited to redshifts of z < 2, where both {psi}* and the cold gas fraction exhibit a similar steep climb from the present day (z = 0), and so it is unknown whether the cold gas fraction follows the same decline as {psi}* at higher redshift. In order to address this, we have used unpublished archival observations of 21-cm absorption in high redshift damped Lyman-{alpha} absorption systems to increase the sample at z > 2. The data suggest that the cold gas fraction does exhibit a decrease, although this is significantly steeper than {psi}* at z ~ 3. This is, however, degenerate with the extents of the absorbing galaxy and the background continuum emission and upon removing these, via canonical evolution models, we find the mean spin temperature of the gas to be <T> ~ 3000 K, compared to the ~2000 K expected from the fit at z < 2. These temperatures are consistent with the observed high neutral hydrogen column densities, which require T < 4000 K in order for the gas not to be highly ionised.
We have determined the O/H and N/O of a sample of 122751 SFGs from the DR7 of the SDSS. For all these galaxies we have also determined their morphology and their SFH using the code STARLIGHT. The comparison of the chemical abundance with the SFH allo ws us to describe the chemical evolution in the nearby universe (z < 0.25) in a manner which is consistent with the formation of their stellar populations and morphologies. A 45% of the SFGs in our sample show an excess of abundance in nitrogen relative to their metallicity. We also find this excess to be accompanied by a deficiency of oxygen, which suggests that this could be the result of effective starburst winds. However, we find no difference in the mode of star formation of the nitrogen rich and nitrogen poor SFGs. Our analysis suggests they all form their stars through a succession of bursts of star formation extended over a few Gyr period. What produces the chemical differences between these galaxies seems therefore to be the intensity of the bursts: the galaxies with an excess of nitrogen are those that are presently experiencing more intense bursts, or have experienced more intense bursts in their past. We also find evidence relating the chemical evolution process to the formation of the galaxies: the galaxies with an excess of nitrogen are more massive, have more massive bulges and earlier morphologies than those showing no excess. As a possible explanation we propose that the lost of metals consistent with starburst winds took place during the formation of the galaxies, when their potential wells were still building up, and consequently were weaker than today, making starburst winds more efficient and independent of the final mass of the galaxies. In good agreement with this interpretation, we also find evidence consistent with downsizing, according to which the more massive SFGs formed before the less massive ones.
If we are to develop a comprehensive and predictive theory of galaxy formation and evolution, it is essential that we obtain an accurate assessment of how and when galaxies assemble their stellar populations, and how this assembly varies with environ ment. There is strong observational support for the hierarchical assembly of galaxies, but our insight into this assembly comes from sifting through the resolved field populations of the surviving galaxies we see today, in order to reconstruct their star formation histories, chemical evolution, and kinematics. To obtain the detailed distribution of stellar ages and metallicities over the entire life of a galaxy, one needs multi-band photometry reaching solar-luminosity main sequence stars. The Hubble Space Telescope can obtain such data in the low-density regions of Local Group galaxies. To perform these essential studies for a fair sample of the Local Universe, we will require observational capabilities that allow us to extend the study of resolved stellar populations to much larger galaxy samples that span the full range of galaxy morphologies, while also enabling the study of the more crowded regions of relatively nearby galaxies. With such capabilities in hand, we will reveal the detailed history of star formation and chemical evolution in the universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا