ﻻ يوجد ملخص باللغة العربية
We present observations of the early X-ray emission for a sample of 40 gamma-ray bursts (GRBs) obtained using the Swift satellite for which the narrow-field instruments were pointed at the burst within 10 minutes of the trigger. Using data from the Burst Alert and X-Ray Telescopes, we show that the X-ray light curve can be well described by an exponential that relaxes into a power law, often with flares superimposed. The transition time between the exponential and the power law provides a physically defined timescale for the burst duration. In most bursts the power law breaks to a shallower decay within the first hour, and a late emission hump is observed which can last for many hours. In other GRBs the hump is weak or absent. The observed variety in the shape of the early X-ray light curve can be explained as a combination of three components: prompt emission from the central engine; afterglow; and the late hump. In this scenario, afterglow emission begins during or soon after the burst and the observed shape of the X-ray light curve depends on the relative strengths of the emission due to the central engine and that of the afterglow. There is a strong correlation such that those GRBs with stronger afterglow components have brighter early optical emission. The late emission hump can have a total fluence equivalent to that of the prompt phase. GRBs with the strongest late humps have weak or no X-ray flares.
We analyze the early X-ray flares in the GRB flare-plateau-afterglow (FPA) phase observed by Swift-XRT. The FPA occurs only in one of the seven GRB subclasses: the binary-driven hypernovae (BdHNe). This subclass consists of long GRBs with a carbon-ox
The past decade has seen a large progress in the X-ray investigation of early-type galaxies of the local universe, and first attempts have been made to reach redshifts z>0 for these objects, thanks to the high angular resolution and sensitivity of th
The study of the early high-energy emission from both long and short Gamma-ray bursts has been revolutionized by the Swift mission. The rapid response of Swift shows that the non-thermal X-ray emission transitions smoothly from the prompt phase into
We intend to determine the type of circumburst medium and measure directly the initial Lorentz factor $Gamma_0$ of GRB outflows. If the early X-ray afterglow lightcurve has a peak and the whole profile across the peak is consistent with the standard
Gamma-ray Bursts (GRBs) are among the potential extragalactic sources of very-high-energy (VHE) gamma-rays. We discuss the prospects of detecting VHE gamma-rays with current ground-based Cherenkov instruments during the afterglow phase. Using the fir