ترغب بنشر مسار تعليمي؟ اضغط هنا

The initial Lorentz factors of fireballs inferred from the early X-ray data of SWIFT GRBs

206   0   0.0 ( 0 )
 نشر من قبل Rongrong Xue
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We intend to determine the type of circumburst medium and measure directly the initial Lorentz factor $Gamma_0$ of GRB outflows. If the early X-ray afterglow lightcurve has a peak and the whole profile across the peak is consistent with the standard external shock model, the early rise profile of light curves can be used to differentiate whether the burst was born in interstellar medium (ISM) or in stellar wind. In the thin shell case, related to a sub-relativistic reverse shock, the peak time occurring after the end of the prompt emission, can be used to derive an accurate $Gamma_0$, especially for the ISM case. The afterglow lightcurves for a flat electron spectrum $1<p<2$ have been derived analytically. In our GRB sample, we obtain $Gamma_0 sim 300$ for the bursts born in ISM. We did not find any good case for bursts born in stellar wind and behaving as a thin shell that can be used to constrain $Gamma_0$ reliably.



قيم البحث

اقرأ أيضاً

We analyze the early X-ray flares in the GRB flare-plateau-afterglow (FPA) phase observed by Swift-XRT. The FPA occurs only in one of the seven GRB subclasses: the binary-driven hypernovae (BdHNe). This subclass consists of long GRBs with a carbon-ox ygen core and a neutron star (NS) binary companion as progenitors. The hypercritical accretion of the supernova (SN) ejecta onto the NS can lead to the gravitational collapse of the NS into a black hole. Consequently, one can observe a GRB emission with isotropic energy $E_{iso}gtrsim10^{52}$~erg, as well as the associated GeV emission and the FPA phase. Previous work had shown that gamma-ray spikes in the prompt emission occur at $sim 10^{15}$--$10^{17}$~cm with Lorentz gamma factor $Gammasim10^{2}$--$10^{3}$. Using a novel data analysis we show that the time of occurrence, duration, luminosity and total energy of the X-ray flares correlate with $E_{iso}$. A crucial feature is the observation of thermal emission in the X-ray flares that we show occurs at radii $sim10^{12}$~cm with $Gammalesssim 4$. These model independent observations cannot be explained by the fireball model, which postulates synchrotron and inverse Compton radiation from a single ultra relativistic jetted emission extending from the prompt to the late afterglow and GeV emission phases. We show that in BdHNe a collision between the GRB and the SN ejecta occurs at $simeq10^{10}$~cm reaching transparency at $sim10^{12}$~cm with $Gammalesssim4$. The agreement between the thermal emission observations and these theoretically derived values validates our model and opens the possibility of testing each BdHN episode with the corresponding Lorentz gamma factor.
We present observations of the early X-ray emission for a sample of 40 gamma-ray bursts (GRBs) obtained using the Swift satellite for which the narrow-field instruments were pointed at the burst within 10 minutes of the trigger. Using data from the B urst Alert and X-Ray Telescopes, we show that the X-ray light curve can be well described by an exponential that relaxes into a power law, often with flares superimposed. The transition time between the exponential and the power law provides a physically defined timescale for the burst duration. In most bursts the power law breaks to a shallower decay within the first hour, and a late emission hump is observed which can last for many hours. In other GRBs the hump is weak or absent. The observed variety in the shape of the early X-ray light curve can be explained as a combination of three components: prompt emission from the central engine; afterglow; and the late hump. In this scenario, afterglow emission begins during or soon after the burst and the observed shape of the X-ray light curve depends on the relative strengths of the emission due to the central engine and that of the afterglow. There is a strong correlation such that those GRBs with stronger afterglow components have brighter early optical emission. The late emission hump can have a total fluence equivalent to that of the prompt phase. GRBs with the strongest late humps have weak or no X-ray flares.
149 - R. Hascoet 2013
The peak time of optical afterglow may be used as a proxy to constrain the Lorentz factor Gamma of the gamma-ray burst (GRB) ejecta. We revisit this method by including bursts with optical observations that started when the afterglow flux was already decaying; these bursts can provide useful lower limits on Gamma. Combining all analyzed bursts in our sample, we find that the previously reported correlation between Gamma and the burst luminosity L_gamma does not hold. However, the data clearly shows a lower bound Gamma_min which increases with L_gamma. We suggest an explanation for this feature: explosions with large jet luminosities and Gamma < Gamma_min suffer strong adiabatic cooling before their radiation is released at the photosphere; they produce weak bursts, barely detectable with present instruments. To test this explanation we examine the effect of adiabatic cooling on the GRB location in the L_gamma - Gamma plane using a Monte Carlo simulation of the GRB population. Our results predict detectable on-axis orphan afterglows. We also derive upper limits on the density of the ambient medium that decelerates the explosion ejecta. We find that the density in many cases is smaller than expected for stellar winds from normal Wolf-Rayet progenitors. The burst progenitors may be peculiar massive stars with weaker winds or there might exist a mechanism that reduces the stellar wind a few years before the explosion.
Compact, continuously launched jets in black hole X-ray binaries (BHXBs) produce radio to optical-infrared synchrotron emission. In most BHXBs, an infrared (IR) excess (above the disc component) is observed when the jet is present in the hard spectra l state. We investigate why some BHXBs have prominent IR excesses and some do not, quantified by the amplitude of the IR quenching or recovery over the transition from/to the hard state. We find that the amplitude of the IR excess can be explained by inclination dependent beaming of the jet synchrotron emission, and the projected area of the accretion disc. Furthermore, we see no correlation between the expected and the observed IR excess for Lorentz factor 1, which is strongly supportive of relativistic beaming of the IR emission, confirming that the IR excess is produced by synchrotron emission in a relativistic outflow. Using the amplitude of the jet fade and recovery over state transitions and the known orbital parameters, we constrain for the first time the bulk Lorentz factor range of compact jets in several BHXBs (with all the well-constrained Lorentz factors lying in the range of $Gamma$ = 1.3 - 3.5). Under the assumption that the Lorentz factor distribution of BHXB jets is a power-law, we find that N($Gamma$) $propto Gamma^{ -1.88^{+0.27}_{-0.34}}$. We also find that the very high amplitude IR fade/recovery seen repeatedly in the BHXB GX 339-4 favors a low inclination angle ($< 15^circ$) of the jet.
330 - G. Ghisellini 2012
We recently found that Gamma Ray Burst energies and luminosities, in their comoving frame, are remarkably similar. This, coupled with the clustering of energetics once corrected for the collimation factor, suggests the possibility that all bursts, in their comoving frame, have the same peak energy Epeak (of the order of a few keV) and the same energetics of the prompt emission Egamma (of the order of 2e48 erg). The large diversity of bursts energies is then due to the different bulk Lorentz factor Gamma and jet aperture angle theta_jet. We investigated, through a population synthesis code, what are the distributions of Gamma and theta_jet compatible with the observations. Both quantities must have preferred values, with log-normal best fitting distributions and <Gamma0> ~ 275 and <theta_jet> ~ 8.7 degree. Moreover, the peak values of the Gamma and theta_jet distributions must be related - theta_jet^2.5 Gamma =const: the narrower the jet angle, the larger the bulk Lorentz factor. We predict that ~6% of the bursts that point to us should not show any jet break in their afterglow light curve since they have sin(theta_jet)<1/Gamma. Finally, we estimate that the local rate of GRBs is ~0.3% of all local SNIb/c and ~2.5% of local hypernovae, i.e. SNIb/c with broad absorption lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا