ﻻ يوجد ملخص باللغة العربية
Emission lines formed in the circumstellar envelopes of several type of stars can be modeled using first principles of line formation. We present simple ways of calculating line emission profiles formed in circumstellar envelopes having different geometrical configurations. The fit of the observed line profiles with the calculated ones may give first order estimates of the physical parameters characterizing the line formation regions: opacity, size, particle density distribution, velocity fields, excitation temperature.
We present the results of short baseline interferometry observations at submillimetre wavelengths, using a two-element interferometer comprising the JCMT and CSO, of circumstellar discs around young YSOs. We model data for the Class 0 protostar IRAS0
This prospective chapter gives our view on the evolution of the study of circumstellar discs within the next 20 years from both observational and theoretical sides. We first present the expected improvements in our knowledge of protoplanetary discs a
Galactic cosmic rays are a ubiquitous source of ionisation of the interstellar gas, competing with UV and X-ray photons as well as natural radioactivity in determining the fractional abundance of electrons, ions and charged dust grains in molecular c
The initial stages of planet formation in circumstellar gas discs proceed via dust grains that collide and build up larger and larger bodies (Safronov 1969). How this process continues from metre-sized boulders to kilometre-scale planetesimals is a m
Most stars are born in clusters and the resulting gravitational interactions between cluster members may significantly affect the evolution of circumstellar discs and therefore the formation of planets and brown dwarfs. Recent findings suggest that t