ترغب بنشر مسار تعليمي؟ اضغط هنا

Circumstellar discs: What will be next?

68   0   0.0 ( 0 )
 نشر من قبل Quentin Kral
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This prospective chapter gives our view on the evolution of the study of circumstellar discs within the next 20 years from both observational and theoretical sides. We first present the expected improvements in our knowledge of protoplanetary discs as for their masses, sizes, chemistry, the presence of planets as well as the evolutionary processes shaping these discs. We then explore the older debris disc stage and explain what will be learnt concerning their birth, the intrinsic links between these discs and planets, the hot dust and the gas detected around main sequence stars as well as discs around white dwarfs.

قيم البحث

اقرأ أيضاً

We study the interaction between massive planets and a gas disc with a mass in the range expected for protoplanetary discs. We use SPH simulations to study the orbital evolution of a massive planet as well as the dynamical response of the disc for pl anet masses between 1 and $6 rmn{M_J}$ and the full range of initial relative orbital inclinations. Gap formation can occur for planets in inclined orbits. For given planet mass, a threshold relative orbital inclination exists under which a gap forms. At high relative inclinations, the inclination decay rate increases for increasing planet mass and decreasing initial relative inclination. For an initial semi-major axis of 5 AU and relative inclination of $i_0=80^circ,$ the times required for the inclination to decay by $10^circ$ is $sim10^{6} rmn{yr}$ and $sim10^{5} rmn{yr}$ for $1 rmn{M_J}$ and $6 rmn{M_J}$. Planets on inclined orbits warp the disc by an extent that is negligible for $1 rmn{M_J}$ but increases with increasing mass becoming quite significant for a planet of mass $6 rmn{M_J}$. We also find a solid body precession of both the total disc angular momentum vector and the planet orbital momentum vector about the total angular momentum vector. Our results illustrate that the influence of an inclined massive planet on a protoplanetary disc can lead to significant changes of the disc structure and orientation which can in turn affect the orbital evolution of the planet significantly.
Circumstellar discs are the precursors of planetary systems and develop shortly after their host star has formed. In their early stages these discs are immersed in an environment rich in gas and neighbouring stars, which can be hostile for their surv ival. There are several environmental processes that affect the evolution of circumstellar discs, and external photoevaporation is arguably one of the most important ones. Theoretical and observational evidence point to circumstellar discs losing mass quickly when in the vicinity of massive, bright stars. In this work we simulate circumstellar discs in clustered environments in a range of stellar densities, where the photoevaporation mass-loss process is resolved simultaneously with the stellar dynamics, stellar evolution, and the viscous evolution of the discs. Our results indicate that external photoevaporation is efficient in depleting disc masses and that the degree of its effect is related to stellar density. We find that a local stellar density lower than 100 stars pc$^{-2}$ is necessary for discs massive enough to form planets to survive for SI{2.0}{Myr}. There is an order of magnitude difference in the disc masses in regions of projected density 100 stars pc$^{-2}$ versus $10^4$ stars pc$^{-2}$. We compare our results to observations of the Lupus clouds, the Orion Nebula Cluster, the Orion Molecular Cloud-2, Taurus, and NGC 2024, and find that the trends observed between region density and disc masses are similar to those in our simulations.
What will the future of UAV cellular communications be? In this tutorial article, we address such a compelling yet difficult question by embarking on a journey from 5G to 6G and sharing a large number of realistic case studies supported by original r esults. We start by overviewing the status quo on UAV communications from an industrial standpoint, providing fresh updates from the 3GPP and detailing new 5G NR features in support of aerial devices. We then show the potential and the limitations of such features. In particular, we demonstrate how sub-6 GHz massive MIMO can successfully tackle cell selection and interference challenges, we showcase encouraging mmWave coverage evaluations in both urban and suburban/rural settings, and we examine the peculiarities of direct device-to-device communications in the sky. Moving on, we sneak a peek at next-generation UAV communications, listing some of the use cases envisioned for the 2030s. We identify the most promising 6G enablers for UAV communication, those expected to take the performance and reliability to the next level. For each of these disruptive new paradigms (non-terrestrial networks, cell-free architectures, artificial intelligence, reconfigurable intelligent surfaces, and THz communications), we gauge the prospective benefits for UAVs and discuss the main technological hurdles that stand in the way. All along, we distil our numerous findings into essential takeaways, and we identify key open problems worthy of further study.
We present and analyse the photometric properties of a nearly complete sample of blue compact dwarf (BCD) and irregular galaxies in the Virgo cluster from multi-band SDSS images. Our study intends to shed light on the ongoing debate of whether a stru ctural evolution from present-day star-forming dwarf galaxies in a cluster environment into ordinary early-type dwarf galaxies is possible based on the structural properties. For this purpose, we decompose the surface brightness profiles of the BCDs into the luminosity contribution of the starburst component and that of their underlying low surface brightness (LSB) host. The latter dominates the stellar mass of the BCD. We find that the LSB-components of the Virgo BCDs are structurally compatible with the more compact half of the Virgo early-type dwarfs, except for a few extreme BCDs. Thus, after termination of starburst activity, the BCDs will presumably fade into galaxies that are structurally similar to ordinary early-type dwarfs. In contrast, the irregulars are more diffuse than the BCDs and are structurally similar to the more diffuse half of the Virgo early-type dwarfs. Therefore, the present-day Virgo irregulars are not simply non-starbursting BCDs. If starbursts in cluster BCDs are transient phenomena with a duration of ~100 Myr or less, during which the galaxies could not travel more than ~100 kpc, then a substantial number of non-starbursting counterparts of these systems must populate the same spatial volume, namely the Virgo cluster outskirts. The majority of them would have to be early-type dwarfs, based on the abundance of different galaxy types with similar colours and structural parameters to the LSB-components of the BCDs. However, most Virgo BCDs have redder LSB-host colours and a less prominent starburst than typical field BCDs, preventing a robust conclusion on possible oscillations between BCDs and early-type dwarfs.
87 - Marco Padovani 2018
Galactic cosmic rays are a ubiquitous source of ionisation of the interstellar gas, competing with UV and X-ray photons as well as natural radioactivity in determining the fractional abundance of electrons, ions and charged dust grains in molecular c louds and circumstellar discs. We model the propagation of different components of Galactic cosmic rays versus the column density of the gas. Our study is focussed on the propagation at high densities, above a few g cm$^{-2}$, especially relevant for the inner regions of collapsing clouds and circumstellar discs. The propagation of primary and secondary CR particles (protons and heavier nuclei, electrons, positrons, and photons) is computed in the continuous slowing down approximation, diffusion approximation, or catastrophic approximation, by adopting a matching procedure for the different transport regimes. A choice of the proper regime depends on the nature of the dominant loss process, modelled as continuous or catastrophic. The CR ionisation rate is determined by CR protons and their secondary electrons below $approx 130$ g cm$^{-2}$ and by electron/positron pairs created by photon decay above $approx600$ g cm$^{-2}$. We show that a proper description of the particle transport is essential to compute the ionisation rate in the latter case, since the electron/positron differential fluxes depend sensitively on the fluxes of both protons and photons. Our results show that the CR ionisation rate in high-density environments, like, e.g., the inner parts of collapsing molecular clouds or the mid-plane of circumstellar discs, is larger than previously assumed. It does not decline exponentially with increasing column density, but follows a more complex behaviour due to the interplay of different processes governing the generation and propagation of secondary particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا